Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms

Siegel, R. L., Miller, K. D., & Fuchs, H. E. et al. (2021). Cancer Statistics, 2021. CA: A Cancer Journal of Clinicians, 71(1), 7–33.

Google Scholar 

Dalela, D., Sun, M., & Diaz, M. et al. (2019). Contemporary trends in the incidence of metastatic prostate cancer among US men: Results from nationwide analyses. European Urology Focus, 5(1), 77–80.

Article  PubMed  Google Scholar 

Ketchandji, M., Kuo, Y. F., & Shahinian, V. B. et al. (2009). Cause of death in older men after the diagnosis of prostate cancer. Journal of the American Geriatrics Society, 57(1), 24–30.

Article  PubMed  Google Scholar 

Kollmeier, M. A., & Zelefsky, M. J. (2012). How to select the optimal therapy for early-stage prostate cancer. Critical Reviews in Oncology/Hematology, 83(2), 225–234.

Article  PubMed  Google Scholar 

Komura, K., Sweeney, C. J., & Inamoto, T. et al. (2018). Current treatment strategies for advanced prostate cancer. International Journal of Urology, 25(3), 220–231.

Article  PubMed  Google Scholar 

Shi, D., & Grossman, S. R. (2010). Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biology and Therapy, 10(8), 737–747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buetow, L., & Huang, D. T. (2016). Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nature Reviews Molecular Cell Biology, 17(10), 626–642.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antao, A. M., Tyagi, A., & Kim, K. S. et al. (2020). Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers (Basel), 12(6), 1579

Article  CAS  PubMed  Google Scholar 

Schulman, B. A., & Harper, J. W. (2009). Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nature Reviews Molecular Cell Biology, 10(5), 319–331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10(11), 755–764.

Article  Google Scholar 

Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.

Article  CAS  PubMed  Google Scholar 

Rotin, D., & Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nature Reviews Molecular Cell Biology, 10(6), 398–409.

Article  CAS  PubMed  Google Scholar 

Smit, J. J., & Sixma, T. K. (2014). RBR E3-ligases at work. EMBO Reports, 15(2), 142–154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clague, M. J., Urbe, S., & Komander, D. (2019). Breaking the chains: Deubiquitylating enzyme specificity begets function. Nature Reviews Molecular Cell Biology, 20(6), 338–352.

Article  CAS  PubMed  Google Scholar 

Zheng, N., & Shabek, N. (2017). Ubiquitin ligases: Structure, function, and regulation. Annual Review of Biochemistry, 86, 129–157.

Article  CAS  PubMed  Google Scholar 

Fouad, S., Wells, O. S., & Hill, M. A. et al. (2019). Cullin Ring Ubiquitin Ligases (CRLs) in cancer: Responses to Ionizing Radiation (IR) Treatment. Frontiers in Physiology, 10, 1144

Article  PubMed  PubMed Central  Google Scholar 

Hatakeyama, S., & Nakayama, K.-I. I. (2003). U-box proteins as a new family of ubiquitin ligases. Biochemical and Biophysical Research Communications, 302(4), 635–645.

Article  CAS  PubMed  Google Scholar 

Weber, J., Polo, S., & Maspero, E. (2019). HECT E3 ligases: A tale with multiple facets. Frontiers in Physiology, 10, 370

Article  PubMed  PubMed Central  Google Scholar 

Spratt, D. E., Walden, H., & Shaw, G. S. (2014). RBR E3 ubiquitin ligases: New structures, new insights, new questions. Biochemical Journal, 458(3), 421–437.

Article  CAS  PubMed  Google Scholar 

Xu, P., Duong, D. M., & Seyfried, N. T. et al. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1), 133–145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Z. D., Li, H. X., & Gan, H. et al. (2022). RNF115 Inhibits the Post-ER Trafficking of TLRs and TLRs-Mediated Immune Responses by Catalyzing K11-Linked Ubiquitination of RAB1A and RAB13. Advanced Science, 9(16), e2105391

Article  PubMed  Google Scholar 

Gao, P., Ma, X., & Yuan, M. et al. (2021). E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Nature Communications, 12(1), 1194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bremm, A., & Komander, D. (2011). Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends in Biochemical Sciences, 36(7), 355–363.

CAS  PubMed  Google Scholar 

Gatti, M., Pinato, S., & Maiolica, A., et al. (2015). RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Reports, 10(2), 226–238.

Article  CAS  PubMed  Google Scholar 

Wu-Baer, F., Lagrazon, K., & Yuan, W. et al. (2003). The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. Journal of Biological Chemistry, 278(37), 34743–34746.

Article  CAS  PubMed  Google Scholar 

Yuan, W. C., Lee, Y. R., & Lin, S. Y. et al. (2014). K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 Ubiquitin E3 ligase regulates protein trafficking. Molecular Cell, 54(4), 586–600.

Article  CAS  PubMed  Google Scholar 

Ohtake, F., Saeki, Y., & Ishido, S., et al. (2016). The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Molecular Cell, 64(2), 251–266.

Article  CAS  PubMed  Google Scholar 

Chen, T., You, Y., & Jiang, H., et al. (2017). Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. Journal of Cellular Physiology, 232(12), 3261–3272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaffer, C. L., San Juan, B. P., & Lim, E., et al. (2016). EMT, cell plasticity and metastasis. Cancer and Metastasis Review, 35(4), 645–654.

Article  Google Scholar 

Guarino, M. (2010). Src signaling in cancer invasion. Journal of Cellular Physiology, 223(1), 14–26.

Article  CAS  PubMed  Google Scholar 

Moro, L., Simoneschi, D., & Kurz, E., et al. (2020). Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 22(9), 1130–1142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhury, A., Hussey, G. S., & Ray, P. S., et al. (2010). TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nature Cell Biology, 12(3), 286–293.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, Y., Jia, X., & Gao, Q., et al. (2017). The ubiquitin ligase UBE4A inhibits prostate cancer progression by targeting interleukin-like EMT inducer (ILEI). IUBMB Life, 69(1), 16–21.

Article  CAS  PubMed  Google Scholar 

Wang, B., Huang, J., & Zhou, J., et al. (2016). DAB2IP regulates EMT and metastasis of prostate cancer through targeting PROX1 transcription and destabilizing HIF1alpha protein. Cellular Signalling, 28(11), 1623–1630.

Article  CAS  PubMed  Google Scholar 

Li, K., Zhang, J., & Tian, Y., et al. (2020). The Wnt/beta-catenin/VASP positive feedback loop drives cell proliferation and migration in breast cancer. Oncogene, 39(11), 2258–2274.

Article  CAS  PubMed  Google Scholar 

Stamos, J. L., & Weis, W. I. (2013). The beta-catenin destruction complex. Cold Spring Harbor Perspectives in Biology, 5(1), a007898.

Article  PubMed  PubMed Central  Google Scholar 

Tian, Q. X., Zhang, Z. H., & Ye, Q. L., et al. (2021). Melatonin inhibits migration and invasion in LPS-stimulated and -unstimulated prostate cancer cells through blocking multiple EMT-relative pathways. Journal of Inflammation Research, 14, 2253–2265.

Article  PubMed  PubMed Central  Google Scholar 

Wang, H., Wang, C., & Peng, G., et al. (2020). Capping protein regulator and myosin 1 Linker 3 Is required for tumor metastasis. Molecular Cancer Research, 18(2), 240–252.

Comments (0)

No login
gif