Siegel, R. L., Miller, K. D., & Fuchs, H. E. et al. (2021). Cancer Statistics, 2021. CA: A Cancer Journal of Clinicians, 71(1), 7–33.
Dalela, D., Sun, M., & Diaz, M. et al. (2019). Contemporary trends in the incidence of metastatic prostate cancer among US men: Results from nationwide analyses. European Urology Focus, 5(1), 77–80.
Ketchandji, M., Kuo, Y. F., & Shahinian, V. B. et al. (2009). Cause of death in older men after the diagnosis of prostate cancer. Journal of the American Geriatrics Society, 57(1), 24–30.
Kollmeier, M. A., & Zelefsky, M. J. (2012). How to select the optimal therapy for early-stage prostate cancer. Critical Reviews in Oncology/Hematology, 83(2), 225–234.
Komura, K., Sweeney, C. J., & Inamoto, T. et al. (2018). Current treatment strategies for advanced prostate cancer. International Journal of Urology, 25(3), 220–231.
Shi, D., & Grossman, S. R. (2010). Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biology and Therapy, 10(8), 737–747.
Article CAS PubMed PubMed Central Google Scholar
Buetow, L., & Huang, D. T. (2016). Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nature Reviews Molecular Cell Biology, 17(10), 626–642.
Article CAS PubMed PubMed Central Google Scholar
Antao, A. M., Tyagi, A., & Kim, K. S. et al. (2020). Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers (Basel), 12(6), 1579
Article CAS PubMed Google Scholar
Schulman, B. A., & Harper, J. W. (2009). Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nature Reviews Molecular Cell Biology, 10(5), 319–331.
Article CAS PubMed PubMed Central Google Scholar
Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10(11), 755–764.
Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.
Article CAS PubMed Google Scholar
Rotin, D., & Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nature Reviews Molecular Cell Biology, 10(6), 398–409.
Article CAS PubMed Google Scholar
Smit, J. J., & Sixma, T. K. (2014). RBR E3-ligases at work. EMBO Reports, 15(2), 142–154.
Article CAS PubMed PubMed Central Google Scholar
Clague, M. J., Urbe, S., & Komander, D. (2019). Breaking the chains: Deubiquitylating enzyme specificity begets function. Nature Reviews Molecular Cell Biology, 20(6), 338–352.
Article CAS PubMed Google Scholar
Zheng, N., & Shabek, N. (2017). Ubiquitin ligases: Structure, function, and regulation. Annual Review of Biochemistry, 86, 129–157.
Article CAS PubMed Google Scholar
Fouad, S., Wells, O. S., & Hill, M. A. et al. (2019). Cullin Ring Ubiquitin Ligases (CRLs) in cancer: Responses to Ionizing Radiation (IR) Treatment. Frontiers in Physiology, 10, 1144
Article PubMed PubMed Central Google Scholar
Hatakeyama, S., & Nakayama, K.-I. I. (2003). U-box proteins as a new family of ubiquitin ligases. Biochemical and Biophysical Research Communications, 302(4), 635–645.
Article CAS PubMed Google Scholar
Weber, J., Polo, S., & Maspero, E. (2019). HECT E3 ligases: A tale with multiple facets. Frontiers in Physiology, 10, 370
Article PubMed PubMed Central Google Scholar
Spratt, D. E., Walden, H., & Shaw, G. S. (2014). RBR E3 ubiquitin ligases: New structures, new insights, new questions. Biochemical Journal, 458(3), 421–437.
Article CAS PubMed Google Scholar
Xu, P., Duong, D. M., & Seyfried, N. T. et al. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1), 133–145.
Article CAS PubMed PubMed Central Google Scholar
Zhang, Z. D., Li, H. X., & Gan, H. et al. (2022). RNF115 Inhibits the Post-ER Trafficking of TLRs and TLRs-Mediated Immune Responses by Catalyzing K11-Linked Ubiquitination of RAB1A and RAB13. Advanced Science, 9(16), e2105391
Gao, P., Ma, X., & Yuan, M. et al. (2021). E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Nature Communications, 12(1), 1194
Article CAS PubMed PubMed Central Google Scholar
Bremm, A., & Komander, D. (2011). Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends in Biochemical Sciences, 36(7), 355–363.
Gatti, M., Pinato, S., & Maiolica, A., et al. (2015). RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Reports, 10(2), 226–238.
Article CAS PubMed Google Scholar
Wu-Baer, F., Lagrazon, K., & Yuan, W. et al. (2003). The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. Journal of Biological Chemistry, 278(37), 34743–34746.
Article CAS PubMed Google Scholar
Yuan, W. C., Lee, Y. R., & Lin, S. Y. et al. (2014). K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 Ubiquitin E3 ligase regulates protein trafficking. Molecular Cell, 54(4), 586–600.
Article CAS PubMed Google Scholar
Ohtake, F., Saeki, Y., & Ishido, S., et al. (2016). The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Molecular Cell, 64(2), 251–266.
Article CAS PubMed Google Scholar
Chen, T., You, Y., & Jiang, H., et al. (2017). Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. Journal of Cellular Physiology, 232(12), 3261–3272.
Article CAS PubMed PubMed Central Google Scholar
Chaffer, C. L., San Juan, B. P., & Lim, E., et al. (2016). EMT, cell plasticity and metastasis. Cancer and Metastasis Review, 35(4), 645–654.
Guarino, M. (2010). Src signaling in cancer invasion. Journal of Cellular Physiology, 223(1), 14–26.
Article CAS PubMed Google Scholar
Moro, L., Simoneschi, D., & Kurz, E., et al. (2020). Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 22(9), 1130–1142.
Article CAS PubMed PubMed Central Google Scholar
Chaudhury, A., Hussey, G. S., & Ray, P. S., et al. (2010). TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nature Cell Biology, 12(3), 286–293.
Article CAS PubMed PubMed Central Google Scholar
Sun, Y., Jia, X., & Gao, Q., et al. (2017). The ubiquitin ligase UBE4A inhibits prostate cancer progression by targeting interleukin-like EMT inducer (ILEI). IUBMB Life, 69(1), 16–21.
Article CAS PubMed Google Scholar
Wang, B., Huang, J., & Zhou, J., et al. (2016). DAB2IP regulates EMT and metastasis of prostate cancer through targeting PROX1 transcription and destabilizing HIF1alpha protein. Cellular Signalling, 28(11), 1623–1630.
Article CAS PubMed Google Scholar
Li, K., Zhang, J., & Tian, Y., et al. (2020). The Wnt/beta-catenin/VASP positive feedback loop drives cell proliferation and migration in breast cancer. Oncogene, 39(11), 2258–2274.
Article CAS PubMed Google Scholar
Stamos, J. L., & Weis, W. I. (2013). The beta-catenin destruction complex. Cold Spring Harbor Perspectives in Biology, 5(1), a007898.
Article PubMed PubMed Central Google Scholar
Tian, Q. X., Zhang, Z. H., & Ye, Q. L., et al. (2021). Melatonin inhibits migration and invasion in LPS-stimulated and -unstimulated prostate cancer cells through blocking multiple EMT-relative pathways. Journal of Inflammation Research, 14, 2253–2265.
Article PubMed PubMed Central Google Scholar
Wang, H., Wang, C., & Peng, G., et al. (2020). Capping protein regulator and myosin 1 Linker 3 Is required for tumor metastasis. Molecular Cancer Research, 18(2), 240–252.
Comments (0)