Berberine and Cyperus rotundus extract nanoformulations protect the rats against Staphylococcus-induced mastitis via antioxidant and anti-inflammatory activities: role of MAPK signaling

Byomi, A., Zidan, S., Hadad, G., Sakr, M., & Sakr, E. (2019). Epidemiology of Mastitis in Dairy Cattle with Special Reference to Some Associated Risk Factors. JCVR, 2(1), 35–46. http://www.jcvr.journals.ekb.eg.

Google Scholar 

Garcia, S. N., Mpatswenumugabo, J. P. M., Ntampaka, P., Nandi, S., Cullor, J. S. (2023). A one health framework to advance food safety and security: An on-farm case study in the Rwandan dairy sector. One Health, 16 (100531). https://doi.org/10.1016/j.onehlt.2023.100531.

Hemmadi, V., & Biswas, M. (2021). An overview of moonlighting proteins in Staphylococcus aureus infection. J.Arch. Microbiol., 203(2), 481–498. https://doi.org/10.1007/s00203-020-02071-y.

Article  CAS  Google Scholar 

O’Dea, M., Abraham, R. J., Sahibzada, S., Lee, T., Jordan, D., Laird, T., Pang, S., Buller, N., Stegger, M., Coombs, G. W., Trott, D. J., Abraham, S. (2020). Antimicrobial resistance and genomic insights into bovine mastitis-associated Staphylococcus aureus in Australia. J.Vet. Microbiol., 250. https://doi.org/10.1016/j.vetmic.2020.108850.

Fournier, B., & Philpott, D. J. (2005). Recognition of Staphylococcus aureus by the innate immune system. J. CMR, 18(3), 521–540. https://doi.org/10.1128/CMR.18.3.521-540.2005.

Article  CAS  Google Scholar 

Turk, R., Koledić, M., Maćešić, N., Benić, M., Dobranić, V., Đuričić, D., Cvetnić, L., & Samardžija, M. (2017). Uloga oksidacijskog stresa i upalnog odgovora u patogenezi mastitisa u mliječnih krava. J. Mljekarstvo, 67(2), 91–101. https://doi.org/10.15567/mljekarstvo.2017.0201. Hrvatska Mljekarska Udruga.

Article  Google Scholar 

Tomanić, D., Kladar, N., Radinović, M., Stančić, I., Erdeljan, M., Stanojević, J., Galić, I., Bijelić, K., & Kovačević, Z. (2023). Intramammary Ethno-Veterinary Formulation in Bovine Mastitis Treatment for Optimization of Antibiotic Use. J. Pathog., 12(2), 1–12. https://doi.org/10.3390/pathogens12020259.

Article  Google Scholar 

Solanki, R., Jodha, B., Prabina, K. E., Aggarwal, N., Patel, S. (2022). Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J. Drug Deliv. Technol., 77(103832). Editions de Sante. https://doi.org/10.1016/j.jddst.2022.103832.

Sharifi-Rad, J., Quispe, C., Butnariu, M., Rotariu, L. S., Sytar, O., Sestito, S., Rapposelli, S., Akram, M., Iqbal, M., Krishna, A., Kumar, N. V. A., Braga, S. S., Cardoso, S. M., Jafernik, K., Ekiert, H., Cruz-Martins, N., Szopa, A., Villagran, M., Mardones, L., Martorell, M., Docea, A. O., & Calina, D. (2021). Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. J.Cancer Cell Int, 21(1), 318–338. https://doi.org/10.1186/s12935-021-02025-4. BioMed Central Ltd.

Article  CAS  Google Scholar 

Harugade, A., Sherje, A. P., Pethe, A. (2023). Chitosan: A review on properties, biological activities and recent progress in biomedical applications. J. React. Funct. Polym., 191(105634). Elsevier B.V. https://doi.org/10.1016/j.reactfunctpolym.2023.105634.

Xu, X., Yi, H., Wu, J., Kuang, T., Zhang, J., Li, Q., Du, H., Xu, T. (2021). Therapeutic effect of berberine on metabolic diseases: both pharmacological data and clinical evidence. J. Biomed. Pharmacother. 133 (110984). https://doi.org/10.1016/j.biopha.2020.110984.

Olleik, H., Yacoub, T., Hoffer, L., Gnansounou, S. M., Benhaiem‐henry, K., Nicoletti, C., Mekhalfi, M., Pique, V., Perrier, J., Hijazi, A., Baydoun, E., Raymond, J., Piccerelle, P., Maresca, M., & Robin, M. (2020). Synthesis and evaluation of the antibacterial activities of 13‐substituted berberine derivatives. J. Antibiot, 9(7), 1–31. https://doi.org/10.3390/antibiotics9070381.

Article  CAS  Google Scholar 

Patel, P. (2021). A bird’s eye view on a therapeutically ‘wonder molecule’: Berberine. J. Phytomedicine Plus, 1(3). Elsevier B.V. https://doi.org/10.1016/j.phyplu.2021.100070.

Egyptian Drug Authority (EDA). (2020) herbal-monograph-2021_hm-head-edaegypt-gov-1-v1 +. (n.d.).

Srivastava, R. K., Singh, A., & Shukla, S. V. (2013). Chemical investigation and pharmaceutical action of Cyperus rotundus-a review. J. Biol. Active Prod. Nat., 3, 166–172.

CAS  Google Scholar 

Soumaya, K.-J., Dhekra, M., Fadwa, C., Zied, G., Ilef, L., Kamel, G., Leila, C.-G. (2013). Pharmacological, antioxidant, genotoxic studies and modulation of rat splenocyte functions by Cyperus rotundus extracts. J. Altern. Complement. Med. 13(28). http://www.biomedcentral.com/1472-6882/13/28.

Seo, Y. J., Jeong, M., Lee, K. T., Jang, D. S., & Choi, J. H. (2016). Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells. J. Int. Immunopharmacol., 38, 61–69. https://doi.org/10.1016/j.intimp.2016.05.017.

Article  CAS  Google Scholar 

Mohan, A., Nisha, A., Sujith, S., Suja Rani, S., & Thomas, N. (2022). Antibiofilm activity of berberine and capsaicin in combination with quinolones against Staphylococcus aureus from bovine mastitis. J Vet Anim Sci, 53(2), 253–261.

Article  Google Scholar 

Wang, X., Feng, S., Ding, N., He, Y., Li, C., Li, M., & Li, Y. (2018). Anti‐inflammatory effects of berberine hydrochloride in an LPS‐induced murine model of mastitis. Evidence‐based Complementary and Alternative Medicine, 2018(1), 5164314.

Article  PubMed  PubMed Central  Google Scholar 

Hashem, A. E., Elmasry, I. H., Lebda, M. A., El-Karim, D. R. G., Hagar, M., Ebied, S. K. M., & Edres, H. A. (2024). Characterization and antioxidant activity of nano-formulated berberine and cyperus rotundus extracts with anti-inflammatory effects in mastitis-induced rats. Scientific Reports, 14(1), 18462.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramadhani, A. H., Nafisah, W., Isnanto, H., Sholeha, T. K., Jatmiko, Y. D., Tsuboi, H., & Rifa’i, M. (2020). Immunomodulatory effects of Cyperus rotundus extract on 7, 12 dimethylbenz [a] anthracene (DMBA) exposed BALB/c mice. Pharmaceutical Sciences, 27(1), 46–55.

Article  Google Scholar 

Suresh, S., Sankar, P., Kalaivanan, R., & Telang, A. G. (2022). Ameliorative effect of nanocurcumin on Staphylococcus aureus-induced mouse mastitis by oxidative stress suppression. J. Inorg. Nano-Met. Chem., 52(7), 1003–1011. https://doi.org/10.1080/24701556.2022.2026384.

Article  CAS  Google Scholar 

Li, H., Jiang, Z., Han, B., Niu, S., Dong, W., & Liu, W. (2015). Pharmacokinetics and biodegradation of chitosan in rats. J. Ocean U. China., 14(5), 897–904. https://doi.org/10.1007/s11802-015-2573-5.

Article  CAS  Google Scholar 

Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. J. Methods Enzymol., 186, 421–425.

Article  CAS  Google Scholar 

Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinyl pyridine. J. Anal. Biochem., 106, 207–212.

Article  CAS  Google Scholar 

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. J. Methods (San Diego, Calif.), 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.

Article  CAS  Google Scholar 

Shan-Rong, S. M. D., James, G., Richard, C. J. M. D., Lillian, Y. L. H. T. B. S., Debra, H. M. D., Yan, S. M. D., Sandra, T. H. T. B. S., & Clive, T. R. M. D. (1999). Sensitivity and Detection Efficiency of a Novel Two-Step Detection System (PowerVision) for Immunohistochemistry. J. Appl. Immunohisto. M. M., 7(3), 201–208. September 1999.

Article  Google Scholar 

Petrosyan, K., Tamayo, R., & Joseph, D. (2002). Sensitivity of a Novel Biotin-Free Detection Reagent (Powervision+TM) for Immunohistochemistry. J. Histotechnol., 25(4), 247–250. https://doi.org/10.1179/his.2002.25.4.247.

Article  CAS  Google Scholar 

Bancroft, J. D., Gamble, M., (2008). Theory and Practiceof Histological Techniques. 6th ed., (Churchill Livingstone, Elsevier, Philadelphia). 2008: 52-74.

Duncan, D. B. (1955). Multiple Range’s and Multiple F-test. Biometrics, 11, 1–42. Version 8.0 Edition. SAS Inst., Inc., Cary, NC.

Article  Google Scholar 

Krishnamoorthy, P., Suresh, K. P., Jayamma, K. S., Shome, B. R., Patil, S. S., & Amachawadi, R. G. (2021). An understanding of the global status of major bacterial pathogens of milk concerning bovine mastitis: A systematic review and meta-analysis (scientometrics). J. Pathogens, 10(5). https://doi.org/10.3390/pathogens10050545.

Tomanić, D., Samardžija, M., Kovačević, Z. (2023). Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. J. Antibiot., 12(4). MDPI. https://doi.org/10.3390/antibiotics12040683.

Davies, M. J., & Hawkins, C. L. (2020). The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. J. Antioxid. Redox Signal., 32(13), 957–981. https://doi.org/10.1089/ars.2020.8030. Mary Ann Liebert Inc.

Article  CAS  Google Scholar 

Cai, L., Tong, J., Zhang, Z., Zhang, Y., Jiang, L., Hou, X., Zhang, H. (2020). Staphylococcus aureus-induced proteomic changes in the mammary tissue of rats: A TMT-based study. J.PLoS ONE, 15(5). https://doi.org/10.1371/journal.pone.0231168.

Kumar, P., Ojasvita, Deora, A., Sharma, H., Sharma, S., Mittal, D., Bhanot, V., Prakash, A., Yadav, R., & Diwakar, R. P. (2020). Bovine Mastitis: A Review. Middle East J. Sci. Res., 28(6), 497–507.

Google Scholar 

Suresh, S., Sankar, P., Telang, A. G., Kesavan, M., & Sarkar, S. N. (2018). Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing NF-κB signaling and inflammation. J. Int. Immunopharmacol, 65, 408–412. https://doi.org/10.1016/j.intimp.2018.10.034.

Article  CAS  Google Scholar 

Jia, F., Ma, W., Zhang, X., Wang, D., & Zhou, X. (2020). Matrine and baicalin inhibit apoptosis induced by Panton-Valentine leukocidin of Staphylococcus aureus in bovine mammary epithelial cells. Int. J. Dairy Sci., 103(3), 2731–2742. https://doi.org/10.3168/jds.2019-17619.

Article  CAS  Google Scholar 

Chen, K., Wu, W., Hou, X., Yang, Q., & Li, Z. (2021). A review: Antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. J. Food Qual. Saf., 5, 1–22. https://doi.org/10.1093/fqsafe/fyab020. Oxford University Press.

Article  CAS  Google Scholar 

Khameneh, B., Eskin, N. A. M., Iranshahy, M., Fazly Bazzaz, B. S. (2021). Phytochemicals: A promising weapon in the arsenal against antibiotic‐resistant bacteria. J. Antibiot., 10(9). MDPI. https://doi.org/10.3390/antibiotics10091044.

Tong, J., Hou, X., Cui, D., Chen, W., Yao, H., Xiong, B., Cai, L., Zhang, H., Jiang, L. (2022). A berberine hydrochloride-carboxymethyl chitosan hydrogel protects against Staphylococcus aureus infection in a rat mastitis model. J. Carbohydr. Polym., 278(118910). https://doi.org/10.1016/j.carbpol.2021.118910.

Bezerra, J. J. L., do Nascimento, T. G., Kamiya, R. U., Prata, A. P. D. N., de Medeiros, P. M., da Silva, S. A. S., de Melo, N. E. (2022). Phytochemical profile, evaluation of antimicrobial and antioxidant activity in vitro of the hydroalcoholic extract of two species of the genus Cyperus (Cyperaceae). Braz. J. Pharm. Sci., 58(e20205). https://doi.org/10.1590/s2175-97902022e20205.

Al-Zahrani, S. S., Bora, R. S., & Al-Garni, S. M. (2021). Antimicrobial activity of chitosan nanoparticles Biotechnol. J. Biotechnol. Equip., 35(1), 1874–1880. https://doi.org/10.1080/13102818.2022.2027816. Taylor and Francis Ltd.

Article  CAS  Google Scholar 

Zhao, Z., Wei, Q., Hua, W., Liu, Y., Liu, X., & Zhu, Y. (2018). Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice. J. Biomed. Pharmacother., 103, 1319–1326. https://doi.org/10.1016/j.biopha.2018.04.175.

Article  CAS  Google Scholar 

Cao, F., Xia, W., Dai, S., Wang, C., Shi, R., Yang, Y., Guo, C., Xu, X. L., Luo, J. (2023). Berberine: An inspiring resource for the treatment of colorectal diseases. J. Biomed. Pharmacother. 167 (115571) Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2023.11

Comments (0)

No login
gif