Byomi, A., Zidan, S., Hadad, G., Sakr, M., & Sakr, E. (2019). Epidemiology of Mastitis in Dairy Cattle with Special Reference to Some Associated Risk Factors. JCVR, 2(1), 35–46. http://www.jcvr.journals.ekb.eg.
Garcia, S. N., Mpatswenumugabo, J. P. M., Ntampaka, P., Nandi, S., Cullor, J. S. (2023). A one health framework to advance food safety and security: An on-farm case study in the Rwandan dairy sector. One Health, 16 (100531). https://doi.org/10.1016/j.onehlt.2023.100531.
Hemmadi, V., & Biswas, M. (2021). An overview of moonlighting proteins in Staphylococcus aureus infection. J.Arch. Microbiol., 203(2), 481–498. https://doi.org/10.1007/s00203-020-02071-y.
O’Dea, M., Abraham, R. J., Sahibzada, S., Lee, T., Jordan, D., Laird, T., Pang, S., Buller, N., Stegger, M., Coombs, G. W., Trott, D. J., Abraham, S. (2020). Antimicrobial resistance and genomic insights into bovine mastitis-associated Staphylococcus aureus in Australia. J.Vet. Microbiol., 250. https://doi.org/10.1016/j.vetmic.2020.108850.
Fournier, B., & Philpott, D. J. (2005). Recognition of Staphylococcus aureus by the innate immune system. J. CMR, 18(3), 521–540. https://doi.org/10.1128/CMR.18.3.521-540.2005.
Turk, R., Koledić, M., Maćešić, N., Benić, M., Dobranić, V., Đuričić, D., Cvetnić, L., & Samardžija, M. (2017). Uloga oksidacijskog stresa i upalnog odgovora u patogenezi mastitisa u mliječnih krava. J. Mljekarstvo, 67(2), 91–101. https://doi.org/10.15567/mljekarstvo.2017.0201. Hrvatska Mljekarska Udruga.
Tomanić, D., Kladar, N., Radinović, M., Stančić, I., Erdeljan, M., Stanojević, J., Galić, I., Bijelić, K., & Kovačević, Z. (2023). Intramammary Ethno-Veterinary Formulation in Bovine Mastitis Treatment for Optimization of Antibiotic Use. J. Pathog., 12(2), 1–12. https://doi.org/10.3390/pathogens12020259.
Solanki, R., Jodha, B., Prabina, K. E., Aggarwal, N., Patel, S. (2022). Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J. Drug Deliv. Technol., 77(103832). Editions de Sante. https://doi.org/10.1016/j.jddst.2022.103832.
Sharifi-Rad, J., Quispe, C., Butnariu, M., Rotariu, L. S., Sytar, O., Sestito, S., Rapposelli, S., Akram, M., Iqbal, M., Krishna, A., Kumar, N. V. A., Braga, S. S., Cardoso, S. M., Jafernik, K., Ekiert, H., Cruz-Martins, N., Szopa, A., Villagran, M., Mardones, L., Martorell, M., Docea, A. O., & Calina, D. (2021). Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. J.Cancer Cell Int, 21(1), 318–338. https://doi.org/10.1186/s12935-021-02025-4. BioMed Central Ltd.
Harugade, A., Sherje, A. P., Pethe, A. (2023). Chitosan: A review on properties, biological activities and recent progress in biomedical applications. J. React. Funct. Polym., 191(105634). Elsevier B.V. https://doi.org/10.1016/j.reactfunctpolym.2023.105634.
Xu, X., Yi, H., Wu, J., Kuang, T., Zhang, J., Li, Q., Du, H., Xu, T. (2021). Therapeutic effect of berberine on metabolic diseases: both pharmacological data and clinical evidence. J. Biomed. Pharmacother. 133 (110984). https://doi.org/10.1016/j.biopha.2020.110984.
Olleik, H., Yacoub, T., Hoffer, L., Gnansounou, S. M., Benhaiem‐henry, K., Nicoletti, C., Mekhalfi, M., Pique, V., Perrier, J., Hijazi, A., Baydoun, E., Raymond, J., Piccerelle, P., Maresca, M., & Robin, M. (2020). Synthesis and evaluation of the antibacterial activities of 13‐substituted berberine derivatives. J. Antibiot, 9(7), 1–31. https://doi.org/10.3390/antibiotics9070381.
Patel, P. (2021). A bird’s eye view on a therapeutically ‘wonder molecule’: Berberine. J. Phytomedicine Plus, 1(3). Elsevier B.V. https://doi.org/10.1016/j.phyplu.2021.100070.
Egyptian Drug Authority (EDA). (2020) herbal-monograph-2021_hm-head-edaegypt-gov-1-v1 +. (n.d.).
Srivastava, R. K., Singh, A., & Shukla, S. V. (2013). Chemical investigation and pharmaceutical action of Cyperus rotundus-a review. J. Biol. Active Prod. Nat., 3, 166–172.
Soumaya, K.-J., Dhekra, M., Fadwa, C., Zied, G., Ilef, L., Kamel, G., Leila, C.-G. (2013). Pharmacological, antioxidant, genotoxic studies and modulation of rat splenocyte functions by Cyperus rotundus extracts. J. Altern. Complement. Med. 13(28). http://www.biomedcentral.com/1472-6882/13/28.
Seo, Y. J., Jeong, M., Lee, K. T., Jang, D. S., & Choi, J. H. (2016). Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells. J. Int. Immunopharmacol., 38, 61–69. https://doi.org/10.1016/j.intimp.2016.05.017.
Mohan, A., Nisha, A., Sujith, S., Suja Rani, S., & Thomas, N. (2022). Antibiofilm activity of berberine and capsaicin in combination with quinolones against Staphylococcus aureus from bovine mastitis. J Vet Anim Sci, 53(2), 253–261.
Wang, X., Feng, S., Ding, N., He, Y., Li, C., Li, M., & Li, Y. (2018). Anti‐inflammatory effects of berberine hydrochloride in an LPS‐induced murine model of mastitis. Evidence‐based Complementary and Alternative Medicine, 2018(1), 5164314.
Article PubMed PubMed Central Google Scholar
Hashem, A. E., Elmasry, I. H., Lebda, M. A., El-Karim, D. R. G., Hagar, M., Ebied, S. K. M., & Edres, H. A. (2024). Characterization and antioxidant activity of nano-formulated berberine and cyperus rotundus extracts with anti-inflammatory effects in mastitis-induced rats. Scientific Reports, 14(1), 18462.
Article CAS PubMed PubMed Central Google Scholar
Ramadhani, A. H., Nafisah, W., Isnanto, H., Sholeha, T. K., Jatmiko, Y. D., Tsuboi, H., & Rifa’i, M. (2020). Immunomodulatory effects of Cyperus rotundus extract on 7, 12 dimethylbenz [a] anthracene (DMBA) exposed BALB/c mice. Pharmaceutical Sciences, 27(1), 46–55.
Suresh, S., Sankar, P., Kalaivanan, R., & Telang, A. G. (2022). Ameliorative effect of nanocurcumin on Staphylococcus aureus-induced mouse mastitis by oxidative stress suppression. J. Inorg. Nano-Met. Chem., 52(7), 1003–1011. https://doi.org/10.1080/24701556.2022.2026384.
Li, H., Jiang, Z., Han, B., Niu, S., Dong, W., & Liu, W. (2015). Pharmacokinetics and biodegradation of chitosan in rats. J. Ocean U. China., 14(5), 897–904. https://doi.org/10.1007/s11802-015-2573-5.
Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. J. Methods Enzymol., 186, 421–425.
Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinyl pyridine. J. Anal. Biochem., 106, 207–212.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. J. Methods (San Diego, Calif.), 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.
Shan-Rong, S. M. D., James, G., Richard, C. J. M. D., Lillian, Y. L. H. T. B. S., Debra, H. M. D., Yan, S. M. D., Sandra, T. H. T. B. S., & Clive, T. R. M. D. (1999). Sensitivity and Detection Efficiency of a Novel Two-Step Detection System (PowerVision) for Immunohistochemistry. J. Appl. Immunohisto. M. M., 7(3), 201–208. September 1999.
Petrosyan, K., Tamayo, R., & Joseph, D. (2002). Sensitivity of a Novel Biotin-Free Detection Reagent (Powervision+TM) for Immunohistochemistry. J. Histotechnol., 25(4), 247–250. https://doi.org/10.1179/his.2002.25.4.247.
Bancroft, J. D., Gamble, M., (2008). Theory and Practiceof Histological Techniques. 6th ed., (Churchill Livingstone, Elsevier, Philadelphia). 2008: 52-74.
Duncan, D. B. (1955). Multiple Range’s and Multiple F-test. Biometrics, 11, 1–42. Version 8.0 Edition. SAS Inst., Inc., Cary, NC.
Krishnamoorthy, P., Suresh, K. P., Jayamma, K. S., Shome, B. R., Patil, S. S., & Amachawadi, R. G. (2021). An understanding of the global status of major bacterial pathogens of milk concerning bovine mastitis: A systematic review and meta-analysis (scientometrics). J. Pathogens, 10(5). https://doi.org/10.3390/pathogens10050545.
Tomanić, D., Samardžija, M., Kovačević, Z. (2023). Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. J. Antibiot., 12(4). MDPI. https://doi.org/10.3390/antibiotics12040683.
Davies, M. J., & Hawkins, C. L. (2020). The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. J. Antioxid. Redox Signal., 32(13), 957–981. https://doi.org/10.1089/ars.2020.8030. Mary Ann Liebert Inc.
Cai, L., Tong, J., Zhang, Z., Zhang, Y., Jiang, L., Hou, X., Zhang, H. (2020). Staphylococcus aureus-induced proteomic changes in the mammary tissue of rats: A TMT-based study. J.PLoS ONE, 15(5). https://doi.org/10.1371/journal.pone.0231168.
Kumar, P., Ojasvita, Deora, A., Sharma, H., Sharma, S., Mittal, D., Bhanot, V., Prakash, A., Yadav, R., & Diwakar, R. P. (2020). Bovine Mastitis: A Review. Middle East J. Sci. Res., 28(6), 497–507.
Suresh, S., Sankar, P., Telang, A. G., Kesavan, M., & Sarkar, S. N. (2018). Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing NF-κB signaling and inflammation. J. Int. Immunopharmacol, 65, 408–412. https://doi.org/10.1016/j.intimp.2018.10.034.
Jia, F., Ma, W., Zhang, X., Wang, D., & Zhou, X. (2020). Matrine and baicalin inhibit apoptosis induced by Panton-Valentine leukocidin of Staphylococcus aureus in bovine mammary epithelial cells. Int. J. Dairy Sci., 103(3), 2731–2742. https://doi.org/10.3168/jds.2019-17619.
Chen, K., Wu, W., Hou, X., Yang, Q., & Li, Z. (2021). A review: Antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. J. Food Qual. Saf., 5, 1–22. https://doi.org/10.1093/fqsafe/fyab020. Oxford University Press.
Khameneh, B., Eskin, N. A. M., Iranshahy, M., Fazly Bazzaz, B. S. (2021). Phytochemicals: A promising weapon in the arsenal against antibiotic‐resistant bacteria. J. Antibiot., 10(9). MDPI. https://doi.org/10.3390/antibiotics10091044.
Tong, J., Hou, X., Cui, D., Chen, W., Yao, H., Xiong, B., Cai, L., Zhang, H., Jiang, L. (2022). A berberine hydrochloride-carboxymethyl chitosan hydrogel protects against Staphylococcus aureus infection in a rat mastitis model. J. Carbohydr. Polym., 278(118910). https://doi.org/10.1016/j.carbpol.2021.118910.
Bezerra, J. J. L., do Nascimento, T. G., Kamiya, R. U., Prata, A. P. D. N., de Medeiros, P. M., da Silva, S. A. S., de Melo, N. E. (2022). Phytochemical profile, evaluation of antimicrobial and antioxidant activity in vitro of the hydroalcoholic extract of two species of the genus Cyperus (Cyperaceae). Braz. J. Pharm. Sci., 58(e20205). https://doi.org/10.1590/s2175-97902022e20205.
Al-Zahrani, S. S., Bora, R. S., & Al-Garni, S. M. (2021). Antimicrobial activity of chitosan nanoparticles Biotechnol. J. Biotechnol. Equip., 35(1), 1874–1880. https://doi.org/10.1080/13102818.2022.2027816. Taylor and Francis Ltd.
Zhao, Z., Wei, Q., Hua, W., Liu, Y., Liu, X., & Zhu, Y. (2018). Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice. J. Biomed. Pharmacother., 103, 1319–1326. https://doi.org/10.1016/j.biopha.2018.04.175.
Cao, F., Xia, W., Dai, S., Wang, C., Shi, R., Yang, Y., Guo, C., Xu, X. L., Luo, J. (2023). Berberine: An inspiring resource for the treatment of colorectal diseases. J. Biomed. Pharmacother. 167 (115571) Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2023.11
Comments (0)