Apatinib Mesylate Inhibits Cell Proliferation and the Metastasis of Esophageal Squamous Cell Carcinoma Through ERK/ELK-1/Snail Pathway

Uhlenhopp, D. J., Then, E. O., Sunkara, T., & Gaduputi, V. (2020). Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 13(6), 1010–1021. https://doi.org/10.1007/s12328-020-01237-x.

Article  PubMed  Google Scholar 

Watanabe, M., Otake, R., Kozuki, R., Toihata, T., Takahashi, K., Okamura, A., & Imamura, Y. (2020). Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg. Today, 50(1), 12–20. https://doi.org/10.1007/s00595-019-01878-7.

Article  PubMed  Google Scholar 

Yu, Y., Zhang, S., Xiang, X., Ling, T., Xie, X., & Cheng, J. (2019). Comparison of the diagnostic value of capsule endoscopy in two positions for esophageal lesions in the elderly. Acta Med. Mediterr., 35(6), 3389–3394. https://doi.org/10.19193/0393-6384_2019_6_533.

Article  Google Scholar 

Rogers, J., Sewastjanow-Silva, M., Waters, R., & Ajani, J. (2022). Esophageal cancer: emerging therapeutics. Expert. Opin. Ther. Targets, 26(2), 107–117. https://doi.org/10.1080/14728222.2022.2036718.

Article  CAS  PubMed  Google Scholar 

Waters, J., & Reznik, S. (2022). Update on management of squamous cell esophageal cancer. Curr. Oncol. Rep., 24(3), 375–385. https://doi.org/10.1007/s11912-021-01153-4.

Article  CAS  PubMed  Google Scholar 

Ashok, A., Niyogi, D., Ranganathan, P., Tandon, S., Bhaskar, M., Karimundackal, G., Jiwnani, S., Shetmahajan, M., & Pramesh, C. (2020). The enhanced recovery after surgery (ERAS) protocol to promote recovery following esophageal cancer resection. Surg. Today, 50(4), 323–334. https://doi.org/10.1007/s00595-020-01956-1.

Article  PubMed  PubMed Central  Google Scholar 

Jajosky, A., & Fels Elliott, D. (2022). Esophageal cancer genetics and clinical translation. Thorac. Surg. Clin., 32(4), 425–435. https://doi.org/10.1016/j.thorsurg.2022.06.002.

Article  PubMed  Google Scholar 

Wei, M., & Friedland, S. (2021). Early esophageal cancer: what the gastroenterologist needs to know. Gastroenterol. Clin. North Am., 50(4), 791–808. https://doi.org/10.1016/j.gtc.2021.07.004.

Article  PubMed  Google Scholar 

Iriarte, F., Su, S., Petrov, R., Bakhos, C., & Abbas, A. (2021). Surgical management of early esophageal cancer. Surg. Clin. North Am., 101(3), 427–441. https://doi.org/10.1016/j.suc.2021.03.005.

Article  PubMed  Google Scholar 

Shao, N., Han, Y., Song, L., & Song, W. (2020). Clinical significance of hypoxia-inducible factor 1α, and its correlation with p53 and vascular endothelial growth factor expression in resectable esophageal squamous cell carcinoma. J. Cancer Res. Ther., 16(2), 269–275. https://doi.org/10.4103/jcrt.JCRT_781_19.

Article  CAS  PubMed  Google Scholar 

Wu, K., Liu, Z., Dong, C., Gu, S., Li, L., Wang, W., & Zhou, Y. (2022). MiR-4739 inhibits the malignant behavior of esophageal squamous cell carcinoma cells via the homeobox C10/vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway. Bioengineered, 13(6), 14066–14079. https://doi.org/10.1080/21655979.2022.2068783.

Article  CAS  PubMed  Google Scholar 

Guleria, K., Kaur, S., Mahajan, D., Sambyal, V., Sudan, M., & Uppal, M. (2022). Impact of VEGFA promoter polymorphisms on esophageal cancer risk in North-West Indians: a case-control study. Genes Genom., 44(8), 923–936. https://doi.org/10.1007/s13258-022-01269-2.

Article  CAS  Google Scholar 

Kumagai, Y., Tachikawa, T., Higashi, M., Sobajima, J., Takahashi, A., Amano, K., Ishibashi, K., Mochiki, E., Yakabi, K., Tamaru, J., & Ishida, H. (2020). Chondromodulin-1 and vascular endothelial growth factor-A expression in esophageal squamous cell carcinoma: accelerator and brake theory for angiogenesis at the early stage of cancer progression. Esophagus, 17(2), 159–167. https://doi.org/10.1007/s10388-019-00695-8.

Article  PubMed  Google Scholar 

Mohammadi, F., Javid, H., Afshari, A., Mashkani, B., & Hashemy, S. (2020). Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol. Biol. Rep., 47(6), 4263–4272. https://doi.org/10.1007/s11033-020-05532-1.

Article  CAS  PubMed  Google Scholar 

Zaparte, A., Cappellari, A., Brandão, C., de Souza, J., Borges, T., Kist, L., Bogo, M., Zerbini, L., Ribeiro Pinto, L., Glaser, T., Gonçalves, M., Naaldijk, Y., Ulrich, H., & Morrone, F. (2021). P2Y2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur. J. Pharmacol., 891, 173687 https://doi.org/10.1016/j.ejphar.2020.173687.

Article  CAS  PubMed  Google Scholar 

Li, J., & Gao, S. (2022). HOXB5-activated ANGPT2 promotes the proliferation, migration, invasion and angiogenic effect of esophageal cancer cells via activating ERK/AKT signaling pathway. Exp. Ther. Med., 24(3), 585 https://doi.org/10.3892/etm.2022.11522.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, B., Liu, C., Zhan, X., & Li, J. (2021). Protegrin-1 regulates porcine granulosa cell proliferation via the EGFR-ERK1/2/p38 signaling pathway in vitro. Front. Physiol., 12, 673777 https://doi.org/10.3389/fphys.2021.673777.

Article  PubMed  PubMed Central  Google Scholar 

Xu, E. W., Yang, J. & Zhang, L. (2022). TSTA3 gene promotes esophageal cancer invasion through MAPK-ERK pathway and downstream MMP2/9. Zhonghua Bing Li Xue Za Zhi, 51(1), 50–52. https://doi.org/10.3760/cma.j.cn112151-20210720-00519.

Article  CAS  PubMed  Google Scholar 

Okamoto, M., Koma, Y., Kodama, T., Nishio, M., Shigeoka, M., & Yokozaki, H. (2020). Growth differentiation factor 15 promotes progression of esophageal squamous cell carcinoma via TGF-β type II receptor activation. Pathobiology, 87(2), 100–113. https://doi.org/10.1159/000504394.

Article  CAS  PubMed  Google Scholar 

Yang, B., Guo, X., Le, C., Su, W., Li, X., Zhang, Y., Yang, G., Liang, W., Zheng, Z., Wu, J., Zhang, Y., & Hao, A. (2022). Efficacy and safety of apatinib plus neoadjuvant chemotherapy for locally advanced esophageal squamous cancer: aphase II trial. Biomed. Res. Int., 2022, 4727407 https://doi.org/10.1155/2022/4727407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng, Y., Mao, J., Wang, X., Yin, B., Shen, Z., Di, C., Gu, W., & Wu, M. (2020). Mechanism for ginsenoside Rh2-induced apoptosis of triple-negative breast cancer MDA-MB-231 cells. Clin. Exp. Obstet. Gynecol., 47(1), 99–104. https://doi.org/10.31083/j.ceog.2020.01.5019.

Article  Google Scholar 

Jia, J., Yu, J., Sun, Z., Yang, Y., Liu, C., Xiao, Y., & Zhang, X. (2021). Phase 1 dose-escalation study of apatinib and irinotecan in esophageal squamous cell carcinoma patients. Transl. Cancer Res., 10(2), 627–636. https://doi.org/10.21037/tcr-20-2492.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vicente Palacio, E., Franco de Castro, A., Adot Zurbano, J., Medina-Polo, J., Salinas Casado, J., & Arlandis Guzmán, S. (2020). Physical exam in the evaluation of bladder pain syndrome (BPS): a key component for differential diagnosis. Arch. Esp. Urol., 73(4), 281–292.

PubMed  Google Scholar 

Wang, H., Wang, X., Fei, J., Li, F., Han, J., & Qin, X. (2020). microRNA-23B inhibits non-small cell lung cancer proliferation, invasion and migration via downregulation of RUNX2 and inhibition of Wnt/Β-catenin signaling pathway. J. Biol. Regul. Homeost. Agents., 34(3), 825–835. https://doi.org/10.23812/20-11-A-34.

Article  CAS  PubMed  Google Scholar 

Xie, C., Zhou, X., Liang, C., Li, X., Ge, M., Chen, Y., Yin, J., Zhu, J., & Zhong, C. (2021). Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J. Exp. Clin. Cancer Res., 40(1), 266 https://doi.org/10.1186/s13046-021-02069-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, X., Li, S., & Ge, G. (2021). Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag. Res., 13, 1333–1342. https://doi.org/10.2147/CMAR.S274631.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zyuz’kov, G., Miroshnichenko, L., Chaikovsky, A., & Kotlovskaya, L. (2022). The role of MARK ERK1/2 and p38 in regulation of functions of neural stem cells and neuroglia under conditions of β-amyloid-induced neurodegeneration. Bull. Exp. Biol. Med., 173(4), 424–428. https://doi.org/10.1007/s10517-022-05561-9.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif