Uhlenhopp, D. J., Then, E. O., Sunkara, T., & Gaduputi, V. (2020). Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 13(6), 1010–1021. https://doi.org/10.1007/s12328-020-01237-x.
Watanabe, M., Otake, R., Kozuki, R., Toihata, T., Takahashi, K., Okamura, A., & Imamura, Y. (2020). Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg. Today, 50(1), 12–20. https://doi.org/10.1007/s00595-019-01878-7.
Yu, Y., Zhang, S., Xiang, X., Ling, T., Xie, X., & Cheng, J. (2019). Comparison of the diagnostic value of capsule endoscopy in two positions for esophageal lesions in the elderly. Acta Med. Mediterr., 35(6), 3389–3394. https://doi.org/10.19193/0393-6384_2019_6_533.
Rogers, J., Sewastjanow-Silva, M., Waters, R., & Ajani, J. (2022). Esophageal cancer: emerging therapeutics. Expert. Opin. Ther. Targets, 26(2), 107–117. https://doi.org/10.1080/14728222.2022.2036718.
Article CAS PubMed Google Scholar
Waters, J., & Reznik, S. (2022). Update on management of squamous cell esophageal cancer. Curr. Oncol. Rep., 24(3), 375–385. https://doi.org/10.1007/s11912-021-01153-4.
Article CAS PubMed Google Scholar
Ashok, A., Niyogi, D., Ranganathan, P., Tandon, S., Bhaskar, M., Karimundackal, G., Jiwnani, S., Shetmahajan, M., & Pramesh, C. (2020). The enhanced recovery after surgery (ERAS) protocol to promote recovery following esophageal cancer resection. Surg. Today, 50(4), 323–334. https://doi.org/10.1007/s00595-020-01956-1.
Article PubMed PubMed Central Google Scholar
Jajosky, A., & Fels Elliott, D. (2022). Esophageal cancer genetics and clinical translation. Thorac. Surg. Clin., 32(4), 425–435. https://doi.org/10.1016/j.thorsurg.2022.06.002.
Wei, M., & Friedland, S. (2021). Early esophageal cancer: what the gastroenterologist needs to know. Gastroenterol. Clin. North Am., 50(4), 791–808. https://doi.org/10.1016/j.gtc.2021.07.004.
Iriarte, F., Su, S., Petrov, R., Bakhos, C., & Abbas, A. (2021). Surgical management of early esophageal cancer. Surg. Clin. North Am., 101(3), 427–441. https://doi.org/10.1016/j.suc.2021.03.005.
Shao, N., Han, Y., Song, L., & Song, W. (2020). Clinical significance of hypoxia-inducible factor 1α, and its correlation with p53 and vascular endothelial growth factor expression in resectable esophageal squamous cell carcinoma. J. Cancer Res. Ther., 16(2), 269–275. https://doi.org/10.4103/jcrt.JCRT_781_19.
Article CAS PubMed Google Scholar
Wu, K., Liu, Z., Dong, C., Gu, S., Li, L., Wang, W., & Zhou, Y. (2022). MiR-4739 inhibits the malignant behavior of esophageal squamous cell carcinoma cells via the homeobox C10/vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway. Bioengineered, 13(6), 14066–14079. https://doi.org/10.1080/21655979.2022.2068783.
Article CAS PubMed Google Scholar
Guleria, K., Kaur, S., Mahajan, D., Sambyal, V., Sudan, M., & Uppal, M. (2022). Impact of VEGFA promoter polymorphisms on esophageal cancer risk in North-West Indians: a case-control study. Genes Genom., 44(8), 923–936. https://doi.org/10.1007/s13258-022-01269-2.
Kumagai, Y., Tachikawa, T., Higashi, M., Sobajima, J., Takahashi, A., Amano, K., Ishibashi, K., Mochiki, E., Yakabi, K., Tamaru, J., & Ishida, H. (2020). Chondromodulin-1 and vascular endothelial growth factor-A expression in esophageal squamous cell carcinoma: accelerator and brake theory for angiogenesis at the early stage of cancer progression. Esophagus, 17(2), 159–167. https://doi.org/10.1007/s10388-019-00695-8.
Mohammadi, F., Javid, H., Afshari, A., Mashkani, B., & Hashemy, S. (2020). Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol. Biol. Rep., 47(6), 4263–4272. https://doi.org/10.1007/s11033-020-05532-1.
Article CAS PubMed Google Scholar
Zaparte, A., Cappellari, A., Brandão, C., de Souza, J., Borges, T., Kist, L., Bogo, M., Zerbini, L., Ribeiro Pinto, L., Glaser, T., Gonçalves, M., Naaldijk, Y., Ulrich, H., & Morrone, F. (2021). P2Y2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur. J. Pharmacol., 891, 173687 https://doi.org/10.1016/j.ejphar.2020.173687.
Article CAS PubMed Google Scholar
Li, J., & Gao, S. (2022). HOXB5-activated ANGPT2 promotes the proliferation, migration, invasion and angiogenic effect of esophageal cancer cells via activating ERK/AKT signaling pathway. Exp. Ther. Med., 24(3), 585 https://doi.org/10.3892/etm.2022.11522.
Article CAS PubMed PubMed Central Google Scholar
Pan, B., Liu, C., Zhan, X., & Li, J. (2021). Protegrin-1 regulates porcine granulosa cell proliferation via the EGFR-ERK1/2/p38 signaling pathway in vitro. Front. Physiol., 12, 673777 https://doi.org/10.3389/fphys.2021.673777.
Article PubMed PubMed Central Google Scholar
Xu, E. W., Yang, J. & Zhang, L. (2022). TSTA3 gene promotes esophageal cancer invasion through MAPK-ERK pathway and downstream MMP2/9. Zhonghua Bing Li Xue Za Zhi, 51(1), 50–52. https://doi.org/10.3760/cma.j.cn112151-20210720-00519.
Article CAS PubMed Google Scholar
Okamoto, M., Koma, Y., Kodama, T., Nishio, M., Shigeoka, M., & Yokozaki, H. (2020). Growth differentiation factor 15 promotes progression of esophageal squamous cell carcinoma via TGF-β type II receptor activation. Pathobiology, 87(2), 100–113. https://doi.org/10.1159/000504394.
Article CAS PubMed Google Scholar
Yang, B., Guo, X., Le, C., Su, W., Li, X., Zhang, Y., Yang, G., Liang, W., Zheng, Z., Wu, J., Zhang, Y., & Hao, A. (2022). Efficacy and safety of apatinib plus neoadjuvant chemotherapy for locally advanced esophageal squamous cancer: aphase II trial. Biomed. Res. Int., 2022, 4727407 https://doi.org/10.1155/2022/4727407.
Article CAS PubMed PubMed Central Google Scholar
Zeng, Y., Mao, J., Wang, X., Yin, B., Shen, Z., Di, C., Gu, W., & Wu, M. (2020). Mechanism for ginsenoside Rh2-induced apoptosis of triple-negative breast cancer MDA-MB-231 cells. Clin. Exp. Obstet. Gynecol., 47(1), 99–104. https://doi.org/10.31083/j.ceog.2020.01.5019.
Jia, J., Yu, J., Sun, Z., Yang, Y., Liu, C., Xiao, Y., & Zhang, X. (2021). Phase 1 dose-escalation study of apatinib and irinotecan in esophageal squamous cell carcinoma patients. Transl. Cancer Res., 10(2), 627–636. https://doi.org/10.21037/tcr-20-2492.
Article CAS PubMed PubMed Central Google Scholar
Vicente Palacio, E., Franco de Castro, A., Adot Zurbano, J., Medina-Polo, J., Salinas Casado, J., & Arlandis Guzmán, S. (2020). Physical exam in the evaluation of bladder pain syndrome (BPS): a key component for differential diagnosis. Arch. Esp. Urol., 73(4), 281–292.
Wang, H., Wang, X., Fei, J., Li, F., Han, J., & Qin, X. (2020). microRNA-23B inhibits non-small cell lung cancer proliferation, invasion and migration via downregulation of RUNX2 and inhibition of Wnt/Β-catenin signaling pathway. J. Biol. Regul. Homeost. Agents., 34(3), 825–835. https://doi.org/10.23812/20-11-A-34.
Article CAS PubMed Google Scholar
Xie, C., Zhou, X., Liang, C., Li, X., Ge, M., Chen, Y., Yin, J., Zhu, J., & Zhong, C. (2021). Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J. Exp. Clin. Cancer Res., 40(1), 266 https://doi.org/10.1186/s13046-021-02069-4.
Article CAS PubMed PubMed Central Google Scholar
Tian, X., Li, S., & Ge, G. (2021). Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag. Res., 13, 1333–1342. https://doi.org/10.2147/CMAR.S274631.
Article CAS PubMed PubMed Central Google Scholar
Zyuz’kov, G., Miroshnichenko, L., Chaikovsky, A., & Kotlovskaya, L. (2022). The role of MARK ERK1/2 and p38 in regulation of functions of neural stem cells and neuroglia under conditions of β-amyloid-induced neurodegeneration. Bull. Exp. Biol. Med., 173(4), 424–428. https://doi.org/10.1007/s10517-022-05561-9.
Comments (0)