Evaluating the Synergistic Antioxidant, Anti-microbial and Adsorbent Potential of Andrographis Paniculata Extract and Gold Nanoparticles

Kokarneswaran, M., Selvaraj, P., Ashokan, T., Perumal, S., Sellappan, P., Durai Murugan, K., Ramalingam, S., Mohan, N., & Chandrasekaran, V. (2020). Discovery of carbon nanotubes in sixth century BC potteries from Keeladi, India. Scientific Reports, 10, 19786. https://doi.org/10.1038/s41598-020-76720-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jadoun, S., Arif, R., Kumari, J. N., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters, 19, 355–374. https://doi.org/10.1007/s10311-020-01074-x.

Article  CAS  Google Scholar 

Yadav, S., Sharma, A. K., & Kumar, P. (2020). Nanoscale self-assembly for therapeutic delivery. Frontiers in Bioengineering and Biotechnology, 8, 127 https://doi.org/10.3389/fbioe.2020.00127.

Article  PubMed  PubMed Central  Google Scholar 

Villanueva-Flores, F., Castro-Lugo, A., Ramírez, O. T., & Palomares, L. A. (2020). Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology, 31(13), 132002 https://doi.org/10.1088/1361-6528/ab5bc8.

Article  PubMed  PubMed Central  Google Scholar 

Decuzzi, P., & Ferrari, M. (2007). The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials, 28(18), 2915–2922. https://doi.org/10.1016/j.biomaterials.2007.02.013.

Article  CAS  PubMed  Google Scholar 

Küünal S., Rauwel P., Rauwel E. (2018) Plant extract mediated synthesis of nanoparticles. Emerging Applications of Nanoparticles and Architecture Nanostructures, 411–446. https://doi.org/10.1016/b978-0-323-51254-1.00014-2

Sundrarajan, M., & Muthulakshmi, V. (2020). Green synthesis of ionic liquid mediated Neodymium oxide nanoparticles by Andrographis paniculata leaves extract for effective bio-medical applications. Journal of Environmental Chemical Engineering, 9(1), 104716 https://doi.org/10.1016/j.jece.2020.104716.

Article  CAS  Google Scholar 

Anantharaman, S., Rego, R., Muthakka, M., Anties, T., & Krishna, H. (2020). Andrographis paniculata-mediated synthesis of silver nanoparticles: antimicrobial properties and computational studies. SN Applied Sciences, 2, 1618 https://doi.org/10.1007/s42452-020-03394-7.

Article  CAS  Google Scholar 

Rajeshkumar, S., Santhoshkumar, J., Jule, L. T., & Ramaswamy, K. (2021). Phytosynthesis of Titanium Dioxide Nanoparticles Using King of Bitter Andrographis paniculata and Its Embryonic Toxicology Evaluation and Biomedical Potential. Bioinorganic Chemistry and Applications, 2021, 6267634 https://doi.org/10.1155/2021/6267634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2017). Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies. Journal of Materials Science: Materials in Electronics, 28, 7991–8001. https://doi.org/10.1016/j.jphotobiol.2018.11.001.

Article  CAS  Google Scholar 

Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I. M. (2018). Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflamMatory activities. Bioprocess and Biosystems Engineering, 41(1), 21–30. https://doi.org/10.1007/s00449-017-1840-9.

Article  CAS  PubMed  Google Scholar 

Karthik, K., Shashank, M., Revathi, V., & Tatarchuk, T. (2019). Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Molecular Crystals and Liquid Crystals, 673, 70–80. https://doi.org/10.1080/15421406.2019.1578495.

Article  CAS  Google Scholar 

Lin, N., Verma, D., Saini, N., Arbi, R., Munir, M., Jovic, M., & Turak, A. (2021). Antiviral nanoparticles for sanitising surfaces: A roadmap to self-sterilising against COVID-19. Nano Today, 40, 101267 https://doi.org/10.1016/j.nantod.2021.101267.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Timoszyk, A., & Grochowalska, R. (2022). Mechanism and Antibacterial Activity of AuNPs (AuNPs) functionalised with natural compounds from plants. Pharmaceutics, 14(12), 2599 https://doi.org/10.3390/pharmaceutics14122599.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao, Y., Inwati, G. K., & Singh, M. (2017). Green synthesis of capped AuNPs and their effect on Gram-positive and Gram-negative bacteria. Future Science OA, 3, 239–254. https://doi.org/10.4155/fsoa-2017-0062.

Article  CAS  Google Scholar 

Chahardoli, A., Karimi, N., Sadeghi, F., & Fattahi, A. (2018). Green approach for synthesis of AuNPs from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artificial Cells, Nanomedicine, and Biotechnology, 46, 579–588. https://doi.org/10.1080/21691401.2017.1332634.

Article  CAS  PubMed  Google Scholar 

Samavati, A., Samavati, Z., Velashjerdi, M., Ismail, A. F., Othman, M. H. D., Abdullah, M. S., Bolurian, M., & Bolurian, M. (2021). Sustainable and fast saliva-based COVID-19 virus diagnosis kit using a novel GO-decorated Au/FBG sensor. Chemical Engineering Journal, 420, 127655 https://doi.org/10.1016/j.cej.2020.127655.

Article  CAS  PubMed  Google Scholar 

Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., & Naseem, S. (2016). AuNPs: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomater, 6(4), 71 https://doi.org/10.3390/nano6040071.

Article  CAS  Google Scholar 

Timoszyk, A. (2018). A review of the biological synthesis of AuNPs using fruit extracts: Scientific potential and application. Bulletin of Materials Science, 41, 1–11. https://doi.org/10.1007/s12034-018-1673-4.

Article  CAS  Google Scholar 

Dahiya, D., & Nigam, P. S. (2022). The Gut microbiota influenced by the intake of probiotics and functional foods with prebiotics can sustain wellness and alleviate certain ailments like gut-inflammation and colon-cancer. Microorganisms, 10(3), 665 https://doi.org/10.3390/microorganisms10030665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padalia, H., & Chanda, S. (2021). Antioxidant and anticancer activities of AuNPs synthesized using aqueous leaf extract of Ziziphus numMularia. BioNanoScience, 11, 281–294. https://doi.org/10.1007/s12668-021-00849-y.

Article  Google Scholar 

Muthukumaran, P., Suresh Babu, P., Shyamala, GowriS., Kamaraj, M., Manikandan, A. & Aravind, J. (2022). Nanotechnologyogical approaches as a promising way for heavy metal mitigation in an aqueous system. Journal of Basic Microbiology, 62(3-4), 376–394. https://doi.org/10.1002/jobm.202100365.

Article  PubMed  Google Scholar 

Balakumar, S., Mahesh, N., Kamaraj, M., Shyamalagowri, S., Manjunathan, J., Murugesan, S., Aravind, J. & Suresh Babu, P. (2022). Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms. Chemosphere, 303(1), 135052 https://doi.org/10.1016/j.chemosphere.2022.135052.

Article  CAS  PubMed  Google Scholar 

Muthukumaran, P., Suresh Babu, P., Shyamalagowri, S., Aravind, J., Kamaraj, M. & Govarthanan, M. (2022). Polymeric biomolecules based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. Chemosphere, 307(4), 136008 https://doi.org/10.1016/j.chemosphere.2022.136008.

Article  CAS  PubMed  Google Scholar 

Suresh Babu P., (2023) Biopolymers as a versatile tool with special emphasis on environmental application. Physical Sciences Reviews, https://doi.org/10.1515/psr-2022-0218.

Donkor A.M., Mosobil R., Suurbaar J. (2016) In vitro bacteriostatic and bactericidal activities of Senna alata, Ricinus communis and Lannea barteri extracts against wound and skin disease causing bacteria. Journal of Analytical & Pharmaceutical Research 3(1):46. https://doi.org/10.15406/japlr.2016.03.00046.

Nagalingam, M., Kalpana, V. N., Devi Rajeswari, V., & Panneerselvam, A. (2018). Biosynthesis, characterisation, and evaluation of bioactivities of leaf extract-mediated biocompatible AuNPs from Alternanthera bettzickiana. Biotechnology Reports, 19, e00268 https://doi.org/10.1016/j.btre.2018.e00268.

Article  Google Scholar 

Ahmad, T., Irfan, M., & Bhattacharjee, S. (2016). Parametric Study on Gold Nanoparticle Synthesis Using Aqueous Elaise Guineensis (Oil palm) leaf Extract: Effect of Precursor Concentration. 4th International Conference on Process Engineering and Advanced Materials. Procedia Engineering, 148, 1396–1401. https://doi.org/10.1016/j.proeng.2016.06.558.

Article  CAS  Google Scholar 

Anandaraj, B., Eswaramoorthi, S., Rajesh, T. P., Aravind, J., & Suresh Babu, P. (2018). Chromium (VI) adsorption by Codium tomentosum: Evidence for adsorption by porous media from sigmoidal dose-response curve. International Journal for Environmental Science and Technology, 15(12), 2595–2606. https://doi.org/10.1007/s13762-017-1488-7.

Article  CAS  Google Scholar 

Suriyakala, G., Sathiyaraj, S., Babujanarthanam, R., Alarjani, K. M., Hussein, D. S., Rasheed, R. A., & Kanimozhi, K. (2022). Green synthesis of AuNPs using Jatropha integerrima Jacq. flower extract and their antibacterial activity. Journal of King Saud University - Science, 34(3), 101830 https://doi.org/10.1016/j.jksus.2022.101830.

Article 

Comments (0)

No login
gif