Interaction Between Allopregnanolone and Amiloride Binding Sites on the GABAA Receptor

Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABA(A) receptors. Journal of Biological Chemistry, 287, 40224–40231. https://doi.org/10.1074/jbc.R112.386664.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen, R. W. (2018). GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 136, 10–22. https://doi.org/10.1016/j.neuropharm.2018.01.036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bukanova, J. V., Kondratenko, R. V., & Solntseva, E. I. (2022). Positive allosteric modulators of GABAA receptor restore chloride current from blockade by competitive antagonists in a ligand-dependent manner. The Journal of Steroid Biochemistry and Molecular Biology, 224, 106158. https://doi.org/10.1016/j.jsbmb.2022.106158.

Article  CAS  PubMed  Google Scholar 

Bukanova, J. V., Solntseva, E. I., & Skrebitsky, V. G. (2024). Factors promoting the release of picrotoxin from the trap in the GABA(A) receptor pore. Neurochemistry International, 175, 105703. https://doi.org/10.1016/j.neuint.2024.105703.

Article  CAS  PubMed  Google Scholar 

Vale, C., Pomés, A., Rodríguez-Farré, E., & Suñol, C. (1997). Allosteric interactions between gamma-aminobutyric acid, benzodiazepine and picrotoxinin binding sites in primary cultures of cerebellar granule cells. Differential effects induced by gamma- and delta-hexachlorocyclohexane. European Journal of Pharmacology, 319, 343–353. https://doi.org/10.1016/s0014-2999(96)00866-7.

Article  CAS  PubMed  Google Scholar 

Li, G. D., Chiara, D. C., Cohen, J. B., & Olsen, R. W. (2009). Neurosteroids allosterically modulate binding of the anesthetic etomidate to gamma-aminobutyric acid type A receptors. Journal of Biological Chemistry, 284, 11771–11775. https://doi.org/10.1074/jbc.C900016200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul, S. M., Pinna, G., & Guidotti, A. (2020). Allopregnanolone: from molecular pathophysiology to therapeutics. A historical perspective. Neurobiology of Stress, 12, 100215. https://doi.org/10.1016/j.ynstr.2020.100215.

Article  PubMed  PubMed Central  Google Scholar 

Gunduz-Bruce, H., Takahashi, K., & Huang, M. Y. (2021). Development of neuroactive steroids for the treatment of postpartum depression. Journal of Neuroendocrinology, 34, e13019. https://doi.org/10.1111/jne.13019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lambert, J. J., Belelli, D., Hill-Venning, C., & Peters, J. A. (1995). Neurosteroids and GABAA receptor function. Trends in Pharmacological Sciences, 16, 295–303. https://doi.org/10.1016/s0165-6147(00)89058-6.

Article  CAS  PubMed  Google Scholar 

Zorumski, C. F., Paul, S. M., Covey, D. F., & Mennerick, S. (2019). Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol Stress, 11, 100196 https://doi.org/10.1016/j.ynstr.2019.100196.

Article  PubMed  PubMed Central  Google Scholar 

Sugasawa, Y., Cheng, W. W., Bracamontes, J. R., Chen, Z. W., Wang, L., Germann, A. L., Pierce, S. R., Senneff, T. C., Krishnan, K., Reichert, D. E., Covey, D. F., Akk, G., & Evers, A. S. (2020). Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. Elife, 9, e55331 https://doi.org/10.7554/eLife.55331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solntseva, E. I., Bukanova, J. V., Skrebitsky, V. G., & Kudova, E. (2022). Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus, 32, 552–563. https://doi.org/10.1002/hipo.23449.

Article  CAS  PubMed  Google Scholar 

Hosie, A. M., Wilkins, M. E., & Smar, T. G. (2007). Neurosteroid binding sites on GABA(A) receptors. Pharmacology & Therapeutics, 116, 7–19. https://doi.org/10.1016/j.pharmthera.03.011.

Article  CAS  Google Scholar 

Chen, Z. W., Bracamontes, J. R., Budelier, M. M., Germann, A. L., Shin, D. J., Kathiresan, K., Qian, M. X., Manion, B., Cheng, W. W. L., Reichert, D. E., Akk, G., Covey, D. F., & Evers, A. S. (2019). Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biology, 17, e3000157 https://doi.org/10.1371/journal.pbio.3000157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legesse, D. H., Fan, C., Teng, J., Zhuang, Y., Howard, R. J., Noviello, C. M., Lindahl, E., & Hibbs, R. E. (2023). Structural insights into opposing actions of neurosteroids on GABAA receptors. Nature Communications, 14, 5091. https://doi.org/10.1038/s41467-023-40800-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, Q., & Sever, P. (2020). Amiloride: A review. The Renin-angiotensin-aldosterone System, 21, 1470320320975893. https://doi.org/10.1177/1470320320975893.

Article  Google Scholar 

Sariban-Sohraby, S., & Benos, D. J. (1986). The amiloride-sensitive sodium channel. American Journal of Physiology, 250, C175–C190. https://doi.org/10.1152/ajpcell.1986.250.2.C175.

Article  CAS  PubMed  Google Scholar 

Cheng, Y., Zhang, W., Li, Y., Jiang, T., Mamat, B., Zhang, Y., Wang, F., & Meng, H. (2021). The role of ASIC1a in epilepsy: A potential therapeutic target. Current Neuropharmacology, 19, 1855–1864. https://doi.org/10.2174/1570159X19666210402102232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali, A., Ahmad, F. J., Pillai, K. K., & Vohora, D. (2004). Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy & Behavior, 5, 322–328. https://doi.org/10.1016/j.yebeh.2004.01.005.

Article  Google Scholar 

Yellepeddi, V., Sayre, C., Burrows, A., Watt, K., Davies, S., Strauss, J., & Battaglia, M. (2020). Stability of extemporaneously compounded amiloride nasal spray. PLoS ONE, 15, e0232435. https://doi.org/10.1371/journal.pone.0232435. eCollection 2020.

Matthews, H., Ranson, M., & Kelso, M. J. (2011). Anti-tumour/metastasis effects of the potassium-sparing diuretic amiloride: an orally active anti-cancer drug waiting for its call-of-duty?. International Journal of Cancer, 129, 2051–2061. https://doi.org/10.1002/ijc.26156.

Article  CAS  PubMed  Google Scholar 

Zhang, H., Peng, C., Huang, H., Lai, Y., Hu, C., Li, F., & Wang, D. (2018). Effects of amiloride on physiological activity of stem cells of human lung cancer and possible mechanism. Biochemical and Biophysical Research Communications, 504, 1–5. https://doi.org/10.1016/j.bbrc.2018.06.138.

Article  CAS  PubMed  Google Scholar 

Ding, Y., Zhang, H., Zhou, Z., Zhong, M., Chen, Q., Wang, X., & Zhu, Z. (2012). u-PA inhibitor amiloride suppresses peritoneal metastasis in gastric cancer. World Journal of Surgical Oncology, 10, 270. https://doi.org/10.1186/1477-7819-10-270.

Article  PubMed  PubMed Central  Google Scholar 

Boscardin, E., Alijevic, O., Hummler, E., Frateschi, S., & Kellenberger, S. (2016). The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR review 19. British Journal of Pharmacology, 173, 2671–2701. https://doi.org/10.1111/bph.13533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci, 29, 578–586. https://doi.org/10.1016/j.tins.2006.06.014.

Article  CAS  PubMed  Google Scholar 

Hu, M., Liu, R., Lam, K. S., & Carraway, K. L. (2023). Structure-activity relationship study identifies a novel lipophilic amiloride derivative that induces lysosome-dependent cell death in therapy-resistant breast cancer cells. bioRxiv May 26, 2023.05.25.542364. https://doi.org/10.1101/2023.05.25.542364.

Liu, F., Zhang, M., Tang, Z. Q., Lu, Y. G., & Chen, L. (2010). Inhibitory effects of amiloride on the current mediated by native GABA(A) receptors in cultured neurons of rat inferior colliculus. Clinical and Experimental Pharmacology and Physiology, 37, 435–440. https://doi.org/10.1111/j.1440-1681.2009.05325.x.

Article  CAS  PubMed  Google Scholar 

Inomata, N., Ishihara, T., & Akaike, N. (1988). Effects of diuretics on GABA-gated chloride current in frog isolated sensory neurons. British Journal of Pharmacology, 93, 679–683. https://doi.org/10.1111/j.1476-5381.1988.tb10326.x.

Article  CAS 

Comments (0)

No login
gif