Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABA(A) receptors. Journal of Biological Chemistry, 287, 40224–40231. https://doi.org/10.1074/jbc.R112.386664.
Article CAS PubMed PubMed Central Google Scholar
Olsen, R. W. (2018). GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 136, 10–22. https://doi.org/10.1016/j.neuropharm.2018.01.036.
Article CAS PubMed PubMed Central Google Scholar
Bukanova, J. V., Kondratenko, R. V., & Solntseva, E. I. (2022). Positive allosteric modulators of GABAA receptor restore chloride current from blockade by competitive antagonists in a ligand-dependent manner. The Journal of Steroid Biochemistry and Molecular Biology, 224, 106158. https://doi.org/10.1016/j.jsbmb.2022.106158.
Article CAS PubMed Google Scholar
Bukanova, J. V., Solntseva, E. I., & Skrebitsky, V. G. (2024). Factors promoting the release of picrotoxin from the trap in the GABA(A) receptor pore. Neurochemistry International, 175, 105703. https://doi.org/10.1016/j.neuint.2024.105703.
Article CAS PubMed Google Scholar
Vale, C., Pomés, A., Rodríguez-Farré, E., & Suñol, C. (1997). Allosteric interactions between gamma-aminobutyric acid, benzodiazepine and picrotoxinin binding sites in primary cultures of cerebellar granule cells. Differential effects induced by gamma- and delta-hexachlorocyclohexane. European Journal of Pharmacology, 319, 343–353. https://doi.org/10.1016/s0014-2999(96)00866-7.
Article CAS PubMed Google Scholar
Li, G. D., Chiara, D. C., Cohen, J. B., & Olsen, R. W. (2009). Neurosteroids allosterically modulate binding of the anesthetic etomidate to gamma-aminobutyric acid type A receptors. Journal of Biological Chemistry, 284, 11771–11775. https://doi.org/10.1074/jbc.C900016200.
Article CAS PubMed PubMed Central Google Scholar
Paul, S. M., Pinna, G., & Guidotti, A. (2020). Allopregnanolone: from molecular pathophysiology to therapeutics. A historical perspective. Neurobiology of Stress, 12, 100215. https://doi.org/10.1016/j.ynstr.2020.100215.
Article PubMed PubMed Central Google Scholar
Gunduz-Bruce, H., Takahashi, K., & Huang, M. Y. (2021). Development of neuroactive steroids for the treatment of postpartum depression. Journal of Neuroendocrinology, 34, e13019. https://doi.org/10.1111/jne.13019.
Article CAS PubMed PubMed Central Google Scholar
Lambert, J. J., Belelli, D., Hill-Venning, C., & Peters, J. A. (1995). Neurosteroids and GABAA receptor function. Trends in Pharmacological Sciences, 16, 295–303. https://doi.org/10.1016/s0165-6147(00)89058-6.
Article CAS PubMed Google Scholar
Zorumski, C. F., Paul, S. M., Covey, D. F., & Mennerick, S. (2019). Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol Stress, 11, 100196 https://doi.org/10.1016/j.ynstr.2019.100196.
Article PubMed PubMed Central Google Scholar
Sugasawa, Y., Cheng, W. W., Bracamontes, J. R., Chen, Z. W., Wang, L., Germann, A. L., Pierce, S. R., Senneff, T. C., Krishnan, K., Reichert, D. E., Covey, D. F., Akk, G., & Evers, A. S. (2020). Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. Elife, 9, e55331 https://doi.org/10.7554/eLife.55331.
Article CAS PubMed PubMed Central Google Scholar
Solntseva, E. I., Bukanova, J. V., Skrebitsky, V. G., & Kudova, E. (2022). Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus, 32, 552–563. https://doi.org/10.1002/hipo.23449.
Article CAS PubMed Google Scholar
Hosie, A. M., Wilkins, M. E., & Smar, T. G. (2007). Neurosteroid binding sites on GABA(A) receptors. Pharmacology & Therapeutics, 116, 7–19. https://doi.org/10.1016/j.pharmthera.03.011.
Chen, Z. W., Bracamontes, J. R., Budelier, M. M., Germann, A. L., Shin, D. J., Kathiresan, K., Qian, M. X., Manion, B., Cheng, W. W. L., Reichert, D. E., Akk, G., Covey, D. F., & Evers, A. S. (2019). Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biology, 17, e3000157 https://doi.org/10.1371/journal.pbio.3000157.
Article CAS PubMed PubMed Central Google Scholar
Legesse, D. H., Fan, C., Teng, J., Zhuang, Y., Howard, R. J., Noviello, C. M., Lindahl, E., & Hibbs, R. E. (2023). Structural insights into opposing actions of neurosteroids on GABAA receptors. Nature Communications, 14, 5091. https://doi.org/10.1038/s41467-023-40800-1.
Article CAS PubMed PubMed Central Google Scholar
Sun, Q., & Sever, P. (2020). Amiloride: A review. The Renin-angiotensin-aldosterone System, 21, 1470320320975893. https://doi.org/10.1177/1470320320975893.
Sariban-Sohraby, S., & Benos, D. J. (1986). The amiloride-sensitive sodium channel. American Journal of Physiology, 250, C175–C190. https://doi.org/10.1152/ajpcell.1986.250.2.C175.
Article CAS PubMed Google Scholar
Cheng, Y., Zhang, W., Li, Y., Jiang, T., Mamat, B., Zhang, Y., Wang, F., & Meng, H. (2021). The role of ASIC1a in epilepsy: A potential therapeutic target. Current Neuropharmacology, 19, 1855–1864. https://doi.org/10.2174/1570159X19666210402102232.
Article CAS PubMed PubMed Central Google Scholar
Ali, A., Ahmad, F. J., Pillai, K. K., & Vohora, D. (2004). Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy & Behavior, 5, 322–328. https://doi.org/10.1016/j.yebeh.2004.01.005.
Yellepeddi, V., Sayre, C., Burrows, A., Watt, K., Davies, S., Strauss, J., & Battaglia, M. (2020). Stability of extemporaneously compounded amiloride nasal spray. PLoS ONE, 15, e0232435. https://doi.org/10.1371/journal.pone.0232435. eCollection 2020.
Matthews, H., Ranson, M., & Kelso, M. J. (2011). Anti-tumour/metastasis effects of the potassium-sparing diuretic amiloride: an orally active anti-cancer drug waiting for its call-of-duty?. International Journal of Cancer, 129, 2051–2061. https://doi.org/10.1002/ijc.26156.
Article CAS PubMed Google Scholar
Zhang, H., Peng, C., Huang, H., Lai, Y., Hu, C., Li, F., & Wang, D. (2018). Effects of amiloride on physiological activity of stem cells of human lung cancer and possible mechanism. Biochemical and Biophysical Research Communications, 504, 1–5. https://doi.org/10.1016/j.bbrc.2018.06.138.
Article CAS PubMed Google Scholar
Ding, Y., Zhang, H., Zhou, Z., Zhong, M., Chen, Q., Wang, X., & Zhu, Z. (2012). u-PA inhibitor amiloride suppresses peritoneal metastasis in gastric cancer. World Journal of Surgical Oncology, 10, 270. https://doi.org/10.1186/1477-7819-10-270.
Article PubMed PubMed Central Google Scholar
Boscardin, E., Alijevic, O., Hummler, E., Frateschi, S., & Kellenberger, S. (2016). The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR review 19. British Journal of Pharmacology, 173, 2671–2701. https://doi.org/10.1111/bph.13533.
Article CAS PubMed PubMed Central Google Scholar
Wemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci, 29, 578–586. https://doi.org/10.1016/j.tins.2006.06.014.
Article CAS PubMed Google Scholar
Hu, M., Liu, R., Lam, K. S., & Carraway, K. L. (2023). Structure-activity relationship study identifies a novel lipophilic amiloride derivative that induces lysosome-dependent cell death in therapy-resistant breast cancer cells. bioRxiv May 26, 2023.05.25.542364. https://doi.org/10.1101/2023.05.25.542364.
Liu, F., Zhang, M., Tang, Z. Q., Lu, Y. G., & Chen, L. (2010). Inhibitory effects of amiloride on the current mediated by native GABA(A) receptors in cultured neurons of rat inferior colliculus. Clinical and Experimental Pharmacology and Physiology, 37, 435–440. https://doi.org/10.1111/j.1440-1681.2009.05325.x.
Article CAS PubMed Google Scholar
Inomata, N., Ishihara, T., & Akaike, N. (1988). Effects of diuretics on GABA-gated chloride current in frog isolated sensory neurons. British Journal of Pharmacology, 93, 679–683. https://doi.org/10.1111/j.1476-5381.1988.tb10326.x.
Comments (0)