Anantharaman, D., Samant, T. A., Sen, S., & Mahimkar, M. B. (2011). Polymorphisms in tobacco metabolism and DNA repair genes modulate oral precancer and cancer risk. Oral Oncology, 47(9), 866–872. https://doi.org/10.1016/j.oraloncology.2011.06.015.
Article CAS PubMed Google Scholar
Kademani, D. (2007). Oral cancer. Mayo Clinic Proceedings, 82(7), 878–887. https://doi.org/10.4065/82.7.878. Erratum in: Mayo Clin Proc. 2007;82(8):1017.
Anwar, N., Pervez, S., Chundriger, Q., Awan, S., Moatter, T., & Ali, T. S. (2020). Oral cancer: Clinicopathological features and associated risk factors in a high risk population presenting to a major tertiary care center in Pakistan. PLOS One, 15(8), e0236359. https://doi.org/10.1371/journal.pone.0236359.
Article CAS PubMed PubMed Central Google Scholar
Savar, N. S., & Bouzari, S. (2014). In silico study of ligand binding site of toll-like receptor 5. Advanced Biomedical Research, 3(Jan), 41. https://doi.org/10.4103/2277-9175.125730.
Article CAS PubMed PubMed Central Google Scholar
Nissar, S., Sameer, A. S., Rasool, R., Qadri, Q., Chowdri, N. A., & Rashid, F. (2017). Role of TLR4 gene polymorphisms in the colorectal cancer risk modulation in ethnic Kashmiri population—A case–control study. Egyptian Journal of Medical Human Genetics, 18(1), 53–59. https://doi.org/10.1016/j.ejmhg.2016.04.004.
Sharma, Y., & Bala, K. (2020). Role of Toll-like receptor in progression and suppression of oral squamous cell carcinoma. Oncology Reviews, 14(1), 456. https://doi.org/10.4081/oncol.2020.456.
Article CAS PubMed PubMed Central Google Scholar
Amarante-Mendes, G. P., Adjemian, S., Branco, L. M., Zanetti, L. C., Weinlich, R., Bortoluci K. R. (2018). Pattern recognition receptors and the host cell death molecular machinery. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02379.
Chervonsky, A. (2009). Innate receptors and microbes in induction of autoimmunity. Current Opinion in Immunology, 21(6), 641–647. https://doi.org/10.1016/j.coi.2009.08.003.
Article CAS PubMed Google Scholar
Rivera C. (2015) Essentials of oral cancer. International Journal of Clinical and Experimental Pathology, 8(9):11884–11894.
Pradere, J. P., Dapito, D. H., & Schwabe, R. F. (2014). The Yin and Yang of Toll-like receptors in cancer. Oncogene., 33(27), 3485–3495. https://doi.org/10.1038/onc.2013.302.
Article CAS PubMed Google Scholar
Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R., & Segal, D. M. (2003). Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends in Immunology, 24(10), 528–533. https://doi.org/10.1016/s1471-4906(03)00242-4.
Article CAS PubMed Google Scholar
Tang, H., Huang, C., Hu, C., Li, H., Shao, T., Ji, J., Bai, J., Fan, D., Lin, A., Xiang, L., & Shao, J. (2021). Inhibitory role of an aeromonas hydrophila tir domain effector in antibacterial immunity by targeting TLR signaling complexes in zebrafish. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.694081.
Fekonja, O., Avbelj, M., & Jerala, R. (2012). Suppression of TLR signaling by targeting TIR domain-containing proteins. Current Protein & Peptide Science, 13(8), 776–788. https://doi.org/10.2174/138920312804871148.
Shcheblyakov, D. V., Logunov, D. Y., Tukhvatulin, A. I., Shmarov, M. M., Naroditsky, B. S., & Gintsburg, A. L. (2010). Toll-like receptors (TLRs): The role in tumor progression. Acta Naturae, 2(3), 21–29.
Article CAS PubMed PubMed Central Google Scholar
Zhang, Z. & & Schluesener, H. J. (2006). Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cellular and Molecular Life Sciences, 63(24), 2901–2907. https://doi.org/10.1007/s00018-006-6189-1.
Article CAS PubMed Google Scholar
O’Neill, L. A. (2008). When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity, 29, 12–20. https://doi.org/10.1016/j.immuni.2008.06.004.
Article CAS PubMed Google Scholar
Basith, S., Manavalan, B., Govindaraj, R. G., & Choi, S. (2011). In silico approach to inhibition of signaling pathways of toll-like receptors 2 and 4 by ST2L. PLOS One, 6(8), e23989. https://doi.org/10.1371/journal.pone.0023989.
Article CAS PubMed PubMed Central Google Scholar
Ju, M., Liu, B., He, H., Gu, Z., Liu, Y., Su, Y., Zhu, D., Cang, J., & Luo, Z. (2018). MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle, 17(16), 2001–2018. https://doi.org/10.1080/15384101.2018.1509635.
Article CAS PubMed PubMed Central Google Scholar
Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5, 461. https://doi.org/10.3389/fimmu.2014.00461.
Article CAS PubMed PubMed Central Google Scholar
Ullah, M. O., Sweet, M. J., Mansell, A., Kellie, S., & Kobe, B. (2016). TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. Journal of Leukocytes Biology, 100, 27–45.
Sun, Z., Luo, Q., & Ye, D., et al. (2012). Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Molecular Cancer, 11, 33. https://doi.org/10.1186/1476-4598-11-33.
Article CAS PubMed PubMed Central Google Scholar
Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in Molecular Medicine, 13, 460–469. https://doi.org/10.1016/j.molmed.2007.09.002.
Article CAS PubMed Google Scholar
Androulidaki, A., Wachsmuth, L., Polykratis, A., & Pasparakis, M. (2018). Differential role of MyD88 and TRIF signaling in myeloid cells in the pathogenesis of autoimmune diabetes. PLoS One, 13(3), e0194048. https://doi.org/10.1371/journal.pone.0194048.
Article CAS PubMed PubMed Central Google Scholar
Deguine, J., & Barton, G. M. (2014). MyD88: a central player in innate immune signaling. F1000Prime Reports, 6, 97. https://doi.org/10.12703/P6-97.
Article PubMed PubMed Central Google Scholar
Li, L., Zhou, Z., Mai, K., Li, P., Wang, Z., Wang, Y., Cao, Y., Ma, X., Zhang, T., & Wang, D. (2021). Protein overexpression of toll-like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncol Lett., 22(5), 786. https://doi.org/10.3892/ol.2021.13047.
Article CAS PubMed PubMed Central Google Scholar
Zhu, H. T., Bian, C., Yuan, J. C., Chu, W. H., Xiang, X., Chen, F., Wang, C. S., Feng, H., & Lin, J. K. (2014). Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. Journal of Neuroinflammation, 11, 59. https://doi.org/10.1186/1742-2094-11-59.
Article CAS PubMed PubMed Central Google Scholar
Ruckdeschel, K., Pfaffinger, G., Haase, R., Sing, A., Weighardt, H., Häcker, G., Holzmann, B., & Heesemann, J. (2004). Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. Journal of Immunology, 173(5), 3320–3328. https://doi.org/10.4049/jimmunol.173.5.3320.
Coussens, L. M. & & Werb, Z. (2002). Inflammation and cancer.Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322.
Article CAS PubMed PubMed Central Google Scholar
Akram, S., Mirza, T., Aamir Mirza, M., & Qureshi, M. (2013). Emerging patterns in clinico-pathological spectrum of oral cancers. Pakistan Journal of Medical Sciences, 29(3), 783–787.
PubMed PubMed Central Google Scholar
Schmausser, B., Andrulis, M., Endrich, S., Müller-Hermelink, H. K., & Eck, M. (2005). Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. International Journal of Medical Microbiology, 295(3), 179–185. https://doi.org/10.1016/j.ijmm.2005.02.009.
Article CAS PubMed Google Scholar
Javaid, N., & Choi, S. (2020). Toll-like receptors from the perspective of cancer treatment. Cancers, 12(2), 297. https://doi.org/10.3390/cancers12020297.
Article CAS PubMed PubMed Central Google Scholar
Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 6(3), 297–305. https://doi.org/10.1016/j.ccr.2004.08.012.
Article CAS PubMed Google Scholar
Hsu, H. J., Yang, Y. H., Shieh, T. Y., Chen, C. H., Kao, Y. H., Yang, C. F., & Ko, E. C. (2014). Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. Kaohsiung Journal of Medical Sciences, 30(11), 551–558. https://doi.org/10.1016/j.kjms.2014.09.003.
Chiu, C. J., Chiang, C. P., Chang, M. L., Chen, H. M., Hahn, L. J., Hsieh, L. L., Kuo, Y. S., & Chen, C. J. (2001). Association between genetic polymorphism of tumor necrosis factor-alpha and risk of oral submucous fibrosis, a pre-cancerous condition of oral cancer. Journal of Dental Research, 80(12), 2055–2059. https://doi.org/10.1177/00220345010800120601.
Article CAS PubMed Google Scholar
Rich, A. M., Hussaini, H. M., Parachuru, V. P., & Seymour, G. J. (2014). Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Frontiers in Immunology, 5.
Comments (0)