Ageeva AA, Kruppa AI, Magin IM, Babenko SV, Leshina TV, Polyakov NE (2022) New aspects of the antioxidant activity of glycyrrhizin revealed by the CIDNP technique. Antioxidants 11:1591. https://doi.org/10.3390/antiox11081591
Article CAS PubMed PubMed Central Google Scholar
Ahmad R, Alqathama A, Aldholmi M, Riaz M, Mukhtar MH, Aljishi F, Althomali E, Alamer MA, Alsulaiman M, Ayashy A, Alshowaiki M (2022) Biological screening of Glycyrrhiza glabra L. from different origins for antidiabetic and anticancer activity. Pharmaceuticals 16:7. https://doi.org/10.3390/ph16010007
Akutagawa K, Fujita T, Ouhara K, Takemura T, Tari M, Kajiya M, Matsuda S, Kuramitsu S, Mizuno N, Shiba H, Kurihara H (2019) Glycyrrhizic acid suppresses inflammation and reduces the increased glucose levels induced by the combination of Porphyromonas gulae and ligature placement in diabetic model mice. Int Immunopharmacol 68:30–38. https://doi.org/10.1016/j.intimp.2018.12.045
Article CAS PubMed Google Scholar
Alam P, Foudah AI, Zaatout HH, Kamal YT, Abdel-Kader MS (2017) Quantification of glycyrrhizin biomarker in Glycyrrhiza glabra rhizome and baby herbal formulations by validated RP-HPTLC methods. Afr J Tradit Complement Altern Med 14:198–205. https://doi.org/10.21010/ajtcam.v14i2.21
Azmoudeh F, Nazeri N (2023) Nanocurcumin: its applications in preventive, restorative, and regenerative dentistry. Rev Bras Farmacogn. https://doi.org/10.1007/s43450-023-00427-1
Bai M, Yao GD, Ren Q, Li Q, Liu QB, Zhang Y, Wang XB, Huang XX, Song SJ (2018) Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. Ind Crops Prod 125:50–58. https://doi.org/10.1016/j.indcrop.2018.08.075
Balkrishna A, Sharma P, Joshi M, Srivastava J, Varshney A (2021) Development and validation of a rapid high-performance thin-layer chromatographic method for quantification of gallic acid, cinnamic acid, piperine, eugenol, and glycyrrhizin in Divya-Swasari-Vati, an Ayurvedic medicine for respiratory ailments. J Sep Sci 44:3146–3157. https://doi.org/10.1002/jssc.202100096
Article CAS PubMed Google Scholar
Baltina LA, Hour MJ, Liu YC, Chang YS, Huang SH, Lai HC, Kondratenko RM, Petrova SF, Yunusov MS, Lin CW (2021a) Antiviral activity of glycyrrhizic acid conjugates with amino acid esters against Zika virus. Virus Res 294:198290. https://doi.org/10.1016/j.virusres.2020.198290
Baltina LA, Lai HC, Liu YC, Huang SH, Hour MJ, Baltina LA, Nugumanov TR, Borisevich SS, Khalilov LM, Petrova SF, Khursan SL, Lin CW (2021b) Glycyrrhetinic acid derivatives as Zika virus inhibitors: synthesis and antiviral activity in vitro. Bioorg Med Chem 41:116204. https://doi.org/10.1016/j.bmc.2021.116204
Baltina LA, Sapozhnikova TA, Gabdrakhmanova SF, Makara NS, Khisamutdinova RY, Baltina LA Jr, Petrova SF, Saifullina DR, Kondratenko RM (2021c) Hypoglycemic activity of glycyrrhizic acid and some of its derivatives in the alloxan diabetes model in rats. Pharm Chem J 55:340–344. https://doi.org/10.1007/s11094-021-02424-x
Ban JY, Park HK, Kim SK (2020) Effect of glycyrrhizic acid on scopolamine-induced cognitive impairment in mice. Int Neurourol J 24:S48-55. https://doi.org/10.5213/inj.2040154.077
Article PubMed PubMed Central Google Scholar
Bian M, Zhen D, Shen QK, Du HH, Ma QQ, Quan ZS (2021) Structurally modified glycyrrhetinic acid derivatives as anti-inflammatory agents. Bioorg Chem 107:104598. https://doi.org/10.1016/j.bioorg.2020.104598
Carod-Artal FJ (2018) Neurological complications of Zika virus infection. Expert Rev Anti-Infect Ther 16:399–410. https://doi.org/10.1080/14787210.2018.1466702
Article CAS PubMed Google Scholar
Chauhan S, Gulati N, Nagaich U (2018) Glycyrrhizic acid: extraction, screening and evaluation of anti–inflammatory property. Ars Pharm 59:61–67. https://doi.org/10.30827/ars.v59i2.7513
Chen K, Yang R, Shen FQ, Zhu HL (2020) Advances in pharmacological activities and mechanisms of glycyrrhizic acid. Curr Med Chem 27:6219–6243. https://doi.org/10.2174/0929867325666191011115407
Article CAS PubMed Google Scholar
Cheng M, Ding L, Kan H, Zhang H, Jiang B, Sun Y, Cao S, Li W, Koike K, Qiu F (2019) Isolation, structural elucidation and in vitro hepatoprotective activity of flavonoids from Glycyrrhiza uralensis. J Nat Med 73:847–854. https://doi.org/10.1007/s11418-019-01329-0
Article CAS PubMed Google Scholar
Cheng M, Zhang J, Yang L, Shen S, Li P, Yao S, Wei W, Guo DA (2021) Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia 149:104803. https://doi.org/10.1016/j.fitote.2020.104803
Diomede L, Beeg M, Gamba A, Fumagalli O, Gobbi M, Salmona M (2021) Can antiviral activity of licorice help fight COVID-19 infection? Biomolecules 11:855. https://doi.org/10.3390/biom11060855
Article CAS PubMed PubMed Central Google Scholar
Elebeedy D, Elkhatib WF, Kandeil A, Ghanem A, Kutkat O, Alnajjar R, Saleh MA, Abd El Maksoud AI, Badawy I, Al-Karmalawy AA (2021) Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Adv 11:29267–29286. https://doi.org/10.1039/D1RA05268C
Article CAS PubMed PubMed Central Google Scholar
Esmaeili H, Karami A, Hadian J, Saharkhiz MJ, Ebrahimi SN (2019) Variation in the phytochemical contents and antioxidant activity of Glycyrrhiza glabra populations collected in Iran. Ind Crops Prod 137:248–259. https://doi.org/10.1016/j.indcrop.2019.05.034
Farmanzadeh D, Tabari L (2017) Glycyrrhizic acid and its salts as antioxidant; a computational investigation. J Indian Chem Soc 94:261–267
Fathima F, Rajeshkumar S (2021) In vitro anti-diabetic activity of Glycyrrhiza glabra ethanolic extract. Ann Romanian Soc Cell Biol 25:2497–2502
Glavač NK, Kreft S (2012) Excretion profile of glycyrrhizin metabolite in human urine. Food Chem 131:305–308. https://doi.org/10.1016/j.foodchem.2011.08.081
Graebin CS (2018) The pharmacological activities of glycyrrhizinic acid (“glycyrrhizin”) and glycyrrhetinic acid. In: Mérillon JM, Ramawat K (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham, pp 245–261. https://doi.org/10.1007/978-3-319-27027-2_15
Hasan MK, Ara I, Mondal MSA, Kabir Y (2021) Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 7:e07240. https://doi.org/10.1016/j.heliyon.2021.e07240
Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S (2021) Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice. Front Pharmacol 12:680674. https://doi.org/10.3389/fphar.2021.680674
Huo X, Meng X, Zhang J, Zhao Y (2020) Hepatoprotective effect of different combinations of 18α-and 18β-glycyrrhizic acid against CCl4-induced liver injury in rats. Biomed. Pharmacother 122:109354. https://doi.org/10.1016/j.biopha.2019.109354
Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, Rehman UN, Irshad M (2018) Therapeutic potential of glycyrrhetinic acids: a patent review (2010–2017). Expert Opin Ther Pat 28:383–398. https://doi.org/10.1080/13543776.2018.1455828
Article CAS PubMed Google Scholar
Icer MA, Sanlier N, Sanlier N (2017) A review: pharmacological effects of licorice (Glycyrrhiza glabra) on human health. Int J Basic Clin Pharmacol 6:12–26
Jin L, Dai L, Ji M, Wang H (2019) Mitochondria-targeted triphenylphosphonium conjugated glycyrrhetinic acid derivatives as potent anticancer drugs. Bioorg Chem 85:179–190. https://doi.org/10.1016/j.bioorg.2018.12.036
Article CAS PubMed Google Scholar
Kowalska A, Kalinowska-Lis U (2019) 18β-Glycyrrhetinic acid: its core biological properties and dermatological applications. Int J Cosmet Sci 41:325–331. https://doi.org/10.1111/ics.12548
Article CAS PubMed Google Scholar
Kumar A, Archo S, Singh CP, Naikoo SH, Singh B, Kaur S, Tasduq SA (2022) Photoprotective effect of 18β-glycyrrhetinic acid derivatives against ultra violet (UV)-B-induced skin aging. Bioorganic Med Chem Lett 76:128984. https://doi.org/10.1016/j.bmcl.2022.128984
Kwon YJ, Son DH, Chung TH, Lee YJ (2020) A review of the pharmacological efficacy and safety of licorice root from corroborative clinical trial findings. J Med Food 23:12–20. https://doi.org/10.1089/jmf.2019.4459
Article CAS PubMed Google Scholar
Lee JC, Seksama LH, Park CH, Kim CS (2023) Enhancing the anti-bacterial activity of nanofibrous polyurethane membranes by incorporating glycyrrhizic acid-conjugated β-cyclodextrin. Mater Lett 338:134030. https://doi.org/10.1016/j.matlet.2023.134030
Lin Y, Kuang Y, Li K, Wang S, Ji S, Chen K, Song W, Qiao X, Ye M (2017) Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorg Med Chem 25:5522–5530. https://doi.org/10.1016/j.bmc.2017.08.018
Article CAS PubMed Google Scholar
Maestrini M, Molento MB, Forzan M, Perrucci S (2021) In vitro anthelmintic activity of an aqueous extract of Glycyrrhiza glabra and of glycyrrhetinic acid against gastrointestinal nematodes of small ruminants. Parasite 28:64. https://doi.org/10.1051/parasite/2021060
Meteleva ES, Chistyachenko YS, Suntsova LP, Khvostov MV, Polyakov NE, Selyutina OY, Tolstikova TG, Frolova TS, Mordvinov VA, Dushkin AV, Lyakhov NZ (2019) Disodium salt of glycyrrhizic acid–a novel supramolecular delivery system for anthelmintic drug praziquantel. J Drug Deliv Sci Technol 50:66–77. https://doi.org/10.1016/j.jddst.2019.01.014
Mittal A, Kakkar R (2020) The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study. Free Radic Res 54:777–786. https://doi.org/10.1080/10715762.2020.1849670
Article CAS PubMed Google Scholar
Mittal A, Devi SP, Kakkar R (2020) A DFT study of the conformational and electronic properties of echinatin, a retrochalcone, and its anion in the gas phase and aqueous solution. Struct Chem 31:2513–2524. https://doi.org/10.1007/s11224-020-01598-6
Mittal A, Vashistha VK, Das DK (2022) Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radic Res 56:378–397. https://doi.org/10.1080/10715762.2022.2120396
Article CAS PubMed Google Scholar
Mittal A, Vashistha VK, Das DK (2023) Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: a DFT approach. Free Radic Res 57:81–90. https://doi.org/10.1080/10715762.2023.2197556
Article CAS PubMed Google Scholar
Mittal A, Kakkar R (2021a) Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: a review. Results Chem 3:100216. https://doi.org/10.1016/j.rechem.2021.100216
Mittal A, Kakkar R (2021b) A theoretical assessment of the structural and electronic features of some retrochalcones. Int J Quantum Chem 121:e26797. https://doi.org/10.1002/qua.26797
Mittal A, Kakkar R (2021c) The antioxidant potential of retrochalcones isolated from liquorice root: a comparative DFT study. Phytochemistry 192:112964. https://doi.org/10.1016/j.phytochem.2021.112964
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q (2022) Synthesis, antiviral, and antibacterial activity of the glycyrrhizic acid and glycyrrhetinic acid derivatives. Russ J Bioorganic Chem 48:906–918. https://doi.org/10.1134/S1068162022050132
Nagar PS, Rane S, Dwivedi M (2022) LC-MS/MS standardization and validation of glycyrrhizin from the roots of Taverniera cuneifolia: a potential alternative source of Glycyrrhiza glabra. Heliyon 8:e10234. https://doi.org/10.1016/j.heliyon.2022.e10234
Nascimento MHMD, de Araújo DR (2022) Exploring the pharmacological potential of glycyrrhizic acid: from therapeutic applications to trends in nanomedicine. Future Pharmacol 2:1–15. https://doi.org/10.3390/futurepharmacol2010001
Comments (0)