Application of molecular dynamic simulations in modeling the excited state behavior of confined molecules

Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Modern molecular photochemistry of organic molecules. University Science Books.

Google Scholar 

Klan, P., & Wirz, J. (2009). Photochemistry of organic compounds. John Wiley & Sons Ltd.

Book  Google Scholar 

Photochemistry in Organized and Constrained Media, V. Ramamurthy (Ed.), VCH Publishers, New York, 1991.

Supramolecular Photochemistry, V. Ramamurthy & Y. Inoue (Eds.), John Wiley, Hoboken, 2011.

Supramolecular Photochemistry, V. Balzani & F. Scandola (Eds.), Ellis Horwood, Chichester, UK, 1991.

Frontiers in Supramolecular Organic Chemistry and Photochemistry, H.-J. Schneider & H. Durr (Eds.),VCH, New York, 1991.

V. Ramamurthy, R.G. Weiss & G.S. Hammond, A Model for the Influence of Organized Media on Photochemical Reactions, Advances in Photochemistry, Vol. 18, John Wiley & Sons, Inc., 1993. pp. 67–234.

Weiss, R. G., Ramamurthy, V., & Hammond, G. S. (1993). Photochemistry in organized and confining media: a model. Accounts of Chemical Research, 26, 530–536.

Article  CAS  Google Scholar 

G.M.J. Schmidt,The photochemistry of the solid state, Reactivity of the photoexcited organic molecule, Proceedings of the Thirteenth Conference on Chemistry at the University of Brussels, October 1965, John Wiley, New York, 1967, 227–288.

Ramamurthy, V., & Sivaguru, J. (2016). Supramolecular photochemistry as a synthetic tool: photocycloaddition. Chemical Reviews, 116, 9914–9993.

Article  CAS  PubMed  Google Scholar 

Ramamurthy, V., & Venkatesan, K. (1987). Photochemical reactions of organic crystals. Chemical Reviews, 87, 433–481.

Article  CAS  Google Scholar 

G. M. J. Schmidt et al. Solid State Photochemistry, D. Ginsburg ((Ed.), Verlag Chemie, Weinheim, 1976.

Cohen, M. D. (1975). The photochemistry of organic solids. Angewandte Chemie (International ed. in English), 14, 386–393.

Article  Google Scholar 

G.M.J. Schmidt, (1964), Topochemistry. III. The crystal chemistry of some trans-cinnamic acids, J. Chem. Soc., 2014–2021.

Gibb, C. L. D., & Gibb, B. C. (2004). Well-defined, organic nanoenvironments in water: the hydrophobic effect drives capsular assembly. Journal of the American Chemical Society, 126, 11408–11409.

Article  CAS  PubMed  Google Scholar 

Choudhury, R., Barman, A., Prabhakar, R., & Ramamurthy, V. (2013). Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies. The Journal of Physical Chemistry B, 117, 398–407.

Article  CAS  PubMed  Google Scholar 

Kulasekharan, R., Choudhury, R., Prabhakara, R., & Ramamurthy, V. (2011). Restricted rotation due to the lack of free space within a capsule translates into product selectivity: Photochemistry of cyclohexyl phenyl ketones within a water-soluble organic capsule. Chemical Communications, 47, 2841–2843.

Article  CAS  PubMed  Google Scholar 

Ramkumar Varadharajan, Sarah Ariel Kelley, Vindi M. Jayasinghe-Arachchige, Rajeev Prabhakar, V. Ramamurthy & S.C. Blackstock, (2022), Organic Host Encapsulation Effects on Nitrosobenzene Monomer−Dimer Distribution and C−NO Bond Rotation in an Aqueous Solution, ACS Org. Inorg. Au, 2, 175-185

A.H. Elcock, D. Sept & J.A. McCammon, (2001), Computer Simulation of Protein−Protein Interactions, J. Phys. Chem., B, 105, 1504–1518.

Baaden, M., & Marrink, S. J. (2013). Coarse-grain modelling of protein–protein interactions. Current Opinion in Structural Biology, 23, 878–886.

Article  CAS  PubMed  Google Scholar 

Basdevant, N., Weinstein, H., & Ceruso, M. (2006). Thermodynamic basis for promiscuity and selectivity in protein−protein interactions: PDZ domains, a case study. Journal of the American Chemical Society, 128, 12766–12777.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salsbury, F. R. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10, 738–744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman, R. (2022). Computational studies of protein–drug binding affinity changes upon mutations in the drug target. WIREs Computational Molecular Science, 12, e1563.

Article  CAS  Google Scholar 

Ozbil, M., Barman, A., Bora, R. P., & Prabhakar, R. (2012). Computational insights into dynamics of protein aggregation and enzyme-substrate interactions. J. Pjys. Chem. Lett., 3, 3460–3469.

Article  CAS  Google Scholar 

Díaz, N., Sordo, T. L., Merz, K. M., & Suárez, D. (2003). Insights into the acylation mechanism of class A β-lactamases from molecular dynamics simulations of the TEM-1 enzyme complexed with benzylpenicillin. Journal of the American Chemical Society, 125, 672–684.

Article  PubMed  Google Scholar 

Sharma, G., Hu, Q., Jayasinghe-Arachchige, V. M., Paul, T. J., Schenk, G., & Prabhakar, R. (2019). Investigating coordination flexibility of glycerophosphodiesterase (GpdQ) through interactions with mono-, di-, and triphosphoester (NPP, BNPP, GPE, and paraoxon) substrates. Physical Chemistry Chemical Physics: PCCP, 21, 5499–5509.

Article  CAS  PubMed  Google Scholar 

Cisneros, G. A., Karttunen, M., Ren, P., & Sagui, C. (2014). Classical electrostatics for biomolecular simulations. Chemical Reviews, 114, 779–814.

Article  CAS  PubMed  Google Scholar 

R. Kapral & G. Ciccotti,Chapter 16 - Molecular dynamics: An account of its evolution, C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Eds.) Theory and Applications of Computational Chemistry, Elsevier, Amsterdam, 2005, 425–441.

Rahman, A., & Stillinger, F. H. (2003). Molecular dynamics study of liquid water. The Journal of Chemical Physics, 55, 3336–3359.

Article  Google Scholar 

H.J.C. Berendsen, Molecular dynamics simulations: The limits and beyond, Springer, 1999.

Pokorna, P., Kruse, H., Krepl, M., & Sponer, J. (2018). QM/MM calculations on protein–RNA complexes: Understanding limitations of classical MD simulations and search for reliable cost-effective QM methods. Journal of Chemical Theory and Computation, 14, 5419–5433.

Article  CAS  PubMed  Google Scholar 

Gibb, C. L. D., Sundaresan, A. K., Ramamurthy, V., & Gibb, B. C. (2008). Templation of the excited-state chemistry of α-(n-Alkyl) Dibenzyl ketones: How guest packing within a nanoscale supramolecular capsule influences photochemistry. Journal of the American Chemical Society, 130, 4069–4080.

Article  CAS  PubMed  Google Scholar 

Das, A., Danao, A., Banerjee, S., Raj, A. M., Sharma, G., Prabhakar, R., Srinivasan, V., Ramamurthy, V., & Sen, P. (2021). Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. Journal of the American Chemical Society, 143, 2025–2036.

Article  CAS  PubMed  Google Scholar 

Boeije, Y., & Olivucci, M. (2023). From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chemical Society Reviews, 52, 2643–2687.

Article  CAS  PubMed  Google Scholar 

Zhu, T., & Van Voorhis, T. (2016). Charge recombination in phosphorescent organic light-emitting diode host–guest systems through qm/mm simulations. Journal of Physical Chemistry C, 120, 19987–19994.

Article  CAS  Google Scholar 

M. Olsson, A. & U. Ryde, (2017), Comparison of QM/MM Methods to Obtain Ligand-Binding Free Energies, J. Chem. Theory Comput., 13, 2245-2253

Wang, M., Mei, Y., & Ryde, U. (2019). Host–guest relative binding affinities at density-functional theory level from semiempirical molecular dynamics simulations. Journal of Chemical Theory and Computation, 15, 2659–2671.

Article  CAS  PubMed  Google Scholar 

Wang, M., Mei, Y., & Ryde, U. (2018). Predicting relative binding affinity using nonequilibrium QM/MM simulations. Journal of Chemical Theory and Computation, 14, 6613–6622.

Article  CAS  PubMed  Google Scholar 

Steinmann, C., Olsson, M. A., & Ryde, U. (2018). Relative ligand-binding free energies calculated from multiple short QM/MM MD simulations. Journal of Chemical Theory and Computation, 14, 3228–3237.

Article  CAS  PubMed  Google Scholar 

Caldararu, O., Olsson, M. A., Misini Ignjatović, M., Wang, M., & Ryde, U. (2018). Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods. Journal of Computer-Aided Molecular Design, 32, 1027–1046.

Article  CAS  PubMed  Google Scholar 

Caldararu, O., Olsson, M. A., Riplinger, C., Neese, F., & Ryde, U. (2017). Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD (T). Journal of Computer-Aided Molecular Design, 31, 87–106.

Article  CAS  PubMed  Google Scholar 

Olsson, M. A., Söderhjelm, P., & Ryde, U. (2016). Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level. Journal of Computational Chemistry, 37, 1589–1600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikulskis, P., Cioloboc, D., Andrejić, M., Khare, S., Brorsson, J., Genheden, S., Mata, R. A., Söderhjelm, P., & Ryde, U. (2014). Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies. Journal of Computer-Aided Molecular Design, 28, 375–400.

Article  CAS  PubMed  Google Scholar 

Andrejić, M., Ryde, U., Mata, R. A., & Söderhjelm, P. (2014). Coupled-cluster interaction energies for 200-atom host-guest systems. ChemPhysChem, 15, 3270–3281.

Article  PubMed  Google Scholar 

Jing, Z., Liu, C., Cheng, S. Y., Qi, R., Walker, B. D., Piquemal, J.-P., & Ren, P. (2019). Polarizable force fields for biomolecular simulations: recent advances and applications. Ann. Rev. Biophys., 48, 371–394.

Article  CAS  Google Scholar 

Nakata, H., & Bai, S. (2019). Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach. J. Comp. Chem., 40, 2000–2012.

Article  CAS  Google Scholar 

He, X., Man, V. H., Yang, W., Lee, T.-S., & Wang, J. (2020). A fast and high-quality charge model for the next generation general AMBER force field. The Journal of Chemical Physics, 153, 114502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grimme, S. (2019). Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. Journal of Chemical Theory and Computation, 15, 2847–2862.

Article  CAS  PubMed  Google Scholar 

Kulasekharan, R., Choudhury, R., Prabhakar, R., & Ramamurthy, V. (2011). Restricted

Comments (0)

No login
gif