Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1), 252–267.
Article PubMed PubMed Central Google Scholar
Da Silva, J. F., & Williams, R. J. P. (2001). The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press.
Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82, 493–512.
Article CAS PubMed Google Scholar
Wysocki, R., & Tamás, M. J. (2010). How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiology Reviews, 34(6), 925–951.
Article CAS PubMed Google Scholar
Sharma, S. K., Goloubinoff, P., & Christen, P. (2011). Non-native proteins as newly-identified targets of heavy metals and metalloids. In Cellular effects of heavy metals. Springer, Dordrecht, 263-274.
Ramadan, D., Rancy, P. C., Nagarkar, R. P., Schneider, J. P., & Thorpe, C. (2009). Arsenic (III) species inhibit oxidative protein folding in vitro. Biochemistry, 48(2), 424–432.
Article CAS PubMed Google Scholar
Jacobson, T., Navarrete, C., Sharma, S. K., Sideri, T. C., Ibstedt, S., Priya, S., Grant, C. M., Christen, P., Goloubinoff, P., & Tamás, M. J. (2012). Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. Journal of Cell Science, 125(21), 5073–5083.
Sharma, S. K., Goloubinoff, P., & Christen, P. (2008). Heavy metal ions are potent inhibitors of protein folding. Biochemical and Biophysical Research Communications, 372(2), 341–345.
Article CAS PubMed Google Scholar
Holland, S., Lodwig, E., Sideri, T., Reader, T., Clarke, I., Gkargkas, K., Hoyle, D. C., Delneri, D., Oliver, S. G., & Avery, S. V. (2007). Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biology, 8(12), 1–10.
Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 324–332.
Article CAS PubMed Google Scholar
Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W., & Balch, W. E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annual Review of Biochemistry, 78, 959–991.
Article CAS PubMed Google Scholar
Stefani, M., & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine, 81(11), 678–699.
Article CAS PubMed Google Scholar
Breydo, L., & Uversky, V. N. (2011). Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics, 3(11), 1163–1180.
Article CAS PubMed Google Scholar
Alies, B., Hureau, C., & Faller, P. (2013). The role of metal ions in amyloid formation: general principles from model peptides. Metallomics, 5(3), 183–192.
Article CAS PubMed Google Scholar
Caudle, W. M., Guillot, T. S., Lazo, C. R., & Miller, G. W. (2012). Industrial toxicants and Parkinson’s disease. Neurotoxicology, 33(2), 178–188.
Article CAS PubMed PubMed Central Google Scholar
Savelieff, M. G., Lee, S., Liu, Y., & Lim, M. H. (2013). Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chemical Biology, 8(5), 856–865.
Article CAS PubMed Google Scholar
Bourassa, M. W., & Miller, L. M. (2012). Metal imaging in neurodegenerative diseases. Metallomics, 4(8), 721–738.
Article CAS PubMed Google Scholar
Greenough, M. A., Camakaris, J., & Bush, A. I. (2013). Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochemistry International, 62(5), 540–555.
Article CAS PubMed Google Scholar
Díaz-Villanueva, J. F., Díaz-Molina, R., & García-González, V. (2015). Protein folding and mechanisms of proteostasis. International Journal of Molecular Sciences, 16(8), 17193–17230.
Article PubMed PubMed Central Google Scholar
Herberhold, H., & Winter, R. (2002). Temperature-and pressure-induced unfolding and refolding of ubiquitin: A static and kinetic Fourier transform infrared spectroscopy study. Biochemistry, 41(7), 2396–2401.
Article CAS PubMed Google Scholar
Khaliq, B., Iqbal, S., Falke, S., Buck, F., Munawar, A., Mahmood, S., Betzel, C., & Akrem, A. (2017). Characterization and In-Silico Studies on Ubiquitin Protein from Seeds of Sisymbrium irio. Pakistan Journal of Life & Social Sciences, 15, 1.
Goto, Y., Takahashi, N., & Fink, A. L. (1990). Mechanism of acid-induced folding of proteins. Biochemistry, 29(14), 3480–3488.
Puett, D. (1973). The Eguilibrium Unfolding Parameters Horse and Sperm Whale Myoglobin., 248(13), 4623–34.
Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.
Article CAS PubMed Google Scholar
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
Article CAS PubMed PubMed Central Google Scholar
Park, S. H. (2008). Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange. BMB Reports, 41(1), 35–40.
Article CAS PubMed Google Scholar
Alazoumi, K. K., Ahmed, A., Alamery, S. F., Shamsi, A., Ahmad, B., Islam, A., & Farooqi, H. (2021). Effect of Antioxidants on Heavy Metals Induced Conformational Alteration of Cytochrome C and Myoglobin. Protein and Peptide Letters, 28(1), 31–42.
Shamsi, A., Ahmed, A., Khan, M. S., Husain, F. M., Amani, S., & Bano, B. (2018). Investigating the interaction of anticancer drug temsirolimus with human transferrin: Molecular docking and spectroscopic approach. Journal of Molecular Recognition, 31(10), e2728.
Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Haq, Q. M. (2015). Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16(12), 29592–29630.
Article CAS PubMed Google Scholar
Parray, Z. A., Shahid, S., Ahmad, F., Hassan, M. I., & Islam, A. (2015). Characterization of intermediate state of myoglobin in the presence of PEG 10 under physiological conditions. International Journal of Biological Macromolecules, 99, 241–248.
Monteiro, C., Santos, C., Bastos, V., & Oliveira, H. (2019). Cr (VI)‐induced genotoxicity and cell cycle arrest in human osteoblast cell line MG‐63. Journal of Applied Toxicology, 39(7), 1057–1065.
Article CAS PubMed Google Scholar
Yin, F., Yan, J., Zhao, Y., Guo, K. J., Zhang, Z. L., Li, A. P., Meng, C. Y., & Guo, L. (2019). Bone marrow mesenchymal stem cells repair Cr (VI)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. Ecotoxicology and Environmental Safety, 176, 234–241.
Article CAS PubMed Google Scholar
Hassan, M., Abd-Elwahab, W., Megahed, R., & Mohammed, A. (2019). An Evaluation of Hepatotoxicity, Nephrotoxicity, and Genotoxicity Induced by Acute Toxicity of Hexavalent Chromium and Comparison of the Possible Protective Role of Selenium and Vitamin E on These Effects. Ain Shams Journal of Forensic Medicine and Clinical Toxicology, 33(2), 48–58.
Hu, G., Feng, H., Long, C., Zhou, D., Li, P., Gao, X., Chen, Z., Wang, T., & Jia, G. (2019). LncRNA expression profiling and its relationship with DNA damage in Cr (VI)-treated 16HBE cells. Science of The Total Environment, 655, 622–632.
Article CAS PubMed Google Scholar
Schlierf, M., Li, H., & Fernandez, J. M. (2004). The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proceedings of the National Academy of Sciences, 101(19), 7299–7304.
Irbäck, A., Mitternacht, S., & Mohanty, S. (2005). Dissecting the mechanical unfolding of ubiquitin. Proceedings of the National Academy of Sciences, 102(38), 13427–13432.
Naiyer, A., Hassan, M. I., Islam, A., Sundd, M., & Ahmad, F. (2015). Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. Journal of Biomolecular Structure and Dynamics, 33(10), 2267–2284.
Kundu, N., Ghosh, R. K., Kar, T., Bhattacharyya, M., & Basak, P. (2016). Illustration of fluorescence quenching mechanism of heme proteins using stern volumer quenching system with determination of positioning of trypohan residues. Journal of Global Biosciences, 5(9), 4579–4584.
Ikeguchi, M., Kuwajima, K., Mitani, M., & Sugai, S. (1986). Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reactions of. alpha.-lactalbumin and lysozyme. Biochemistry, 25(22), 6965–6972.
Article CAS PubMed Google Scholar
Hasanbašić, S., Jahić, A., Berbić, S., Žnidarič, M. T., & Žerovnik, E. (2018). Inhibition of protein aggregation by several antioxidants. Oxidative Medicine and Cellular Longevity, 2018, 1-12.
Tamás, M. J., Fauvet, B., Christen, P., & Goloubinoff, P. (2018). Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current Genetics, 64(1), 177–181.
Comments (0)