Ni(II)-doped CuWO4 photoanodes with enhanced photoelectrocatalytic activity

Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.

Article  Google Scholar 

Mathiesen, B. V., Lund, H., & Karlsson, K. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy, 88, 488–501.

Article  Google Scholar 

Kim, J. H., Hansora, D., Sharma, P., Jang, J. W., & Lee, J. S. (2019). Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 48, 1908–1971.

Article  CAS  PubMed  Google Scholar 

Gray, H. B. (2009). Powering the planet with solar fuel. Nature Chemistry, 1, 7.

Article  CAS  PubMed  Google Scholar 

Lewis, N. S. (2013). Toward cost-effective solar energy use. Sustain Energy, 798, 798–802.

Google Scholar 

N’Tsoukpoe, K. E., Liu, H., Le Pierrès, N., & Luo, L. (2009). A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews, 13, 2385–2396.

Article  Google Scholar 

Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6, 511–518.

Article  CAS  Google Scholar 

Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43, 7520–7535.

Article  CAS  PubMed  Google Scholar 

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110, 6446–6473.

Article  CAS  PubMed  Google Scholar 

Jaramillo, T. F., Deutsch, T. G., Gaillard, N., & Dinh, H. N. (2010). Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 25, 3–16.

Article  Google Scholar 

Sivula, K., & van de Krol, R. (2016). Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 1, 15010.

Article  CAS  Google Scholar 

Lee, D. K., Lee, D., Lumley, M. A., & Choi, K.-S. (2019). Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews, 48, 2126–2157.

Article  CAS  PubMed  Google Scholar 

Tang, Y., Rong, N., Liu, F., Chu, M., Dong, H., Zhang, Y., & Xiao, P. (2016). Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment. Applied Surface Science, 361, 133–140.

Article  CAS  Google Scholar 

Thang, H. V., Albanese, E., & Pacchioni, G. (2019). Electronic structure of CuWO4: Dielectric-dependent, self-consistent hybrid functional study of a Mott-Hubbard type insulator. Journal of Physics: Condensed Matter, 31, 145503.

PubMed  Google Scholar 

Jeong, H. W., Jeon, T. H., Jang, J. S., Choi, W., & Park, H. (2013). Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance. Journal of Physical Chemistry C, 117, 9104–9112.

Article  CAS  Google Scholar 

Wang, Z., Huang, X., & Wang, X. (2019). Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catalysis Today, 335, 31–38.

Article  CAS  Google Scholar 

Tayebi, M., & Lee, B. K. (2019). Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renewable and Sustainable Energy Reviews, 111, 332–343.

Article  CAS  Google Scholar 

Kim, J. H., Jang, Y. J., Kim, J. H., Jang, J. W., Choi, S. H., & Lee, J. S. (2015). Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale, 7, 19144–19151.

Article  CAS  PubMed  Google Scholar 

Guijarro, N., Bornoz, P., Prévot, M. S., Yu, X., Zhu, X., Johnson, M., Jeanbourquin, X., Le Formal, F., & Sivula, K. (2018). Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustain Energy Fuels, 2, 103–117.

Article  CAS  Google Scholar 

Yourey, J. E., & Bartlett, B. M. (2011). Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. Journal of Materials Chemistry, 21, 7651–7660.

Article  CAS  Google Scholar 

Guo, W., Duan, Z., Mabayoje, O., Chemelewski, W. D., Xiao, P., Henkelman, G., Zhang, Y., & Mullins, C. B. (2016). Improved charge carrier transport of hydrogen-treated copper tungstate: Photoelectrochemical and computational study. Journal of the Electrochemical Society, 163, H970–H975.

Article  CAS  Google Scholar 

Liu, Y., Xia, M., Yao, L., Mensi, M., Ren, D., Grätzel, M., Sivula, K., & Guijarro, N. (2021). Spectroelectrochemical and chemical evidence of surface passivation at zinc ferrite (ZnFe2O4) photoanodes for solar water oxidation. Advanced Functional Materials, 31, 2010081.

Article  CAS  Google Scholar 

Yourey, J. E., Pyper, K. J., Kurtz, J. B., & Bartlett, B. M. (2013). Chemical stability of CuWO4 for photoelectrochemical water oxidation. Journal of Physical Chemistry C, 117, 8708–8718.

Article  CAS  Google Scholar 

Lhermitte, C. R., & Bartlett, B. M. (2016). Advancing the chemistry of CuWO4 for photoelectrochemical water oxidation. Accounts of Chemical Research, 49, 1121–1129.

Article  CAS  PubMed  Google Scholar 

Hill, J. C., & Choi, K.-S. (2013). Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. Journal of Materials Chemistry A, 1, 5006–5014.

Article  CAS  Google Scholar 

Pyper, K. J., Yourey, J. E., & Bartlett, B. M. (2013). Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state. Journal of Physical Chemistry C, 117, 24726–24732.

Article  CAS  Google Scholar 

Grigioni, I., Polo, A., Dozzi, M. V., Ganzer, L., Bozzini, B., Cerullo, G., & Selli, E. (2021). Ultrafast charge carrier dynamics in CuWO4 photoanodes. Journal of Physical Chemistry C, 125, 5692–5699.

Article  CAS  Google Scholar 

Wu, Z., Zhao, Z., Cheung, G., Doughty, R. M., Ballestas-Barrientos, A. R., Hirmez, B., Han, R., Maschmeyer, T., & Osterloh, F. E. (2018). Role of surface states in photocatalytic oxygen evolution with CuWO4 particles. Journal of the Electrochemical Society, 166, H3014–H3019.

Article  Google Scholar 

Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., & Bisquert, J. (2012). Water oxidation at hematite photoelectrodes: The role of surface states. Journal of the American Chemical Society, 134, 4294–4302.

Article  CAS  PubMed  Google Scholar 

Wang, D., Bassi, P., Qi, H., Zhao, X., Gurudayal, W., & L., Xu, R., Sritharan, T. & Chen, Z. (2016). Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation. Materials (Basel), 9, 348.

Article  PubMed  Google Scholar 

Pilli, S. K., Deutsch, T. G., Furtak, T. E., Brown, L. D., Turner, J. A., & Herring, A. M. (2013). BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Physical Chemistry Chemical Physics: PCCP, 15, 3273–3278.

Article  CAS  PubMed  Google Scholar 

Rodríguez-Gutiérrez, I., Djatoubai, E., Rodríguez-Pérez, M., Su, J., Rodríguez-Gattorno, G., Vayssieres, L., & Oskam, G. (2019). Photoelectrochemical water oxidation at FTO|WO3@CuWO4 and FTO|WO3 @CuWO4|BiVO4 heterojunction systems: An IMPS analysis. Electrochimica Acta, 308, 317–327.

Article  Google Scholar 

Hamann, T. W., Shadabipour, P., & Raithel, A. L. (2020). Charge-carrier dynamics at the CuWO4/electrocatalyst interface for photoelectrochemical water oxidation. ACS Applied Materials & Interfaces, 12, 50592–50599.

Article  Google Scholar 

Nam, K. M., Cheon, E. A., Shin, W. J., & Bard, A. J. (2015). Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst. Langmuir, 31, 10897–10903.

Article  CAS  PubMed  Google Scholar 

Bohra, D., & Smith, W. A. (2015). Improved charge separation via Fe-doping of copper tungstate photoanodes. Physical Chemistry Chemical Physics: PCCP, 17, 9857–9866.

Article  CAS  PubMed  Google Scholar 

Li, C., & Diao, P. (2020). Fluorine doped copper tungsten nanoflakes with enhanced charge separation for efficient photoelectrochemical water oxidation. Electrochimica Acta, 352, 136471–136479.

Article  CAS  Google Scholar 

Polo, A., Nomellini, C., Grigioni, I., Dozzi, M. V., & Selli, E. (2020). Effective visible light exploitation by copper Molybdo-tungstate photoanodes. ACS Applied Energy Materials, 3, 6956–6964.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill, J. C., Ping, Y., Galli, G. A., & Choi, K.-S. (2013). Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption. Energy & Environmental Science, 6, 2440–2446.

Article  CAS  Google Scholar 

Ye, W., Chen, F., Zhao, F., Han, N., & Li, Y. (2016). CuWO4 nanoflake array-based single-junction and heterojunction photoanodes for photoelectrochemical water oxidation. ACS Applied Materials & Interfaces, 8, 9211–9217.

Article  CAS  Google Scholar 

Hu, D., Diao, P., Xu, D., Xia, M., Gu, Y., Wu, Q., Li, C., & Yang, S. (2016). Copper (II) tungstate nanoflake array films: Sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting. Nanoscale, 3, 5892–5901.

Article  Google Scholar 

Fan, L., Sunarso, J., Zhang, X., Xiong, X., He, L., Luo, L., Wang, F., Fan, Z., Wu, C., Han, D., Wong, N. H., Wang, Y., Chen, G., & Chen, W. (2022). Regulating the hole transfer from CuWO4 photoanode to NiWO4 electrocatalyst for enhanced water oxidation performance. International Journal of Hydrogen Energy, 47, 20153–20165.

Article 

Comments (0)

No login
gif