Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.
Mathiesen, B. V., Lund, H., & Karlsson, K. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy, 88, 488–501.
Kim, J. H., Hansora, D., Sharma, P., Jang, J. W., & Lee, J. S. (2019). Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 48, 1908–1971.
Article CAS PubMed Google Scholar
Gray, H. B. (2009). Powering the planet with solar fuel. Nature Chemistry, 1, 7.
Article CAS PubMed Google Scholar
Lewis, N. S. (2013). Toward cost-effective solar energy use. Sustain Energy, 798, 798–802.
N’Tsoukpoe, K. E., Liu, H., Le Pierrès, N., & Luo, L. (2009). A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews, 13, 2385–2396.
Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6, 511–518.
Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43, 7520–7535.
Article CAS PubMed Google Scholar
Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110, 6446–6473.
Article CAS PubMed Google Scholar
Jaramillo, T. F., Deutsch, T. G., Gaillard, N., & Dinh, H. N. (2010). Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 25, 3–16.
Sivula, K., & van de Krol, R. (2016). Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials, 1, 15010.
Lee, D. K., Lee, D., Lumley, M. A., & Choi, K.-S. (2019). Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews, 48, 2126–2157.
Article CAS PubMed Google Scholar
Tang, Y., Rong, N., Liu, F., Chu, M., Dong, H., Zhang, Y., & Xiao, P. (2016). Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment. Applied Surface Science, 361, 133–140.
Thang, H. V., Albanese, E., & Pacchioni, G. (2019). Electronic structure of CuWO4: Dielectric-dependent, self-consistent hybrid functional study of a Mott-Hubbard type insulator. Journal of Physics: Condensed Matter, 31, 145503.
Jeong, H. W., Jeon, T. H., Jang, J. S., Choi, W., & Park, H. (2013). Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance. Journal of Physical Chemistry C, 117, 9104–9112.
Wang, Z., Huang, X., & Wang, X. (2019). Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catalysis Today, 335, 31–38.
Tayebi, M., & Lee, B. K. (2019). Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renewable and Sustainable Energy Reviews, 111, 332–343.
Kim, J. H., Jang, Y. J., Kim, J. H., Jang, J. W., Choi, S. H., & Lee, J. S. (2015). Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale, 7, 19144–19151.
Article CAS PubMed Google Scholar
Guijarro, N., Bornoz, P., Prévot, M. S., Yu, X., Zhu, X., Johnson, M., Jeanbourquin, X., Le Formal, F., & Sivula, K. (2018). Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustain Energy Fuels, 2, 103–117.
Yourey, J. E., & Bartlett, B. M. (2011). Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. Journal of Materials Chemistry, 21, 7651–7660.
Guo, W., Duan, Z., Mabayoje, O., Chemelewski, W. D., Xiao, P., Henkelman, G., Zhang, Y., & Mullins, C. B. (2016). Improved charge carrier transport of hydrogen-treated copper tungstate: Photoelectrochemical and computational study. Journal of the Electrochemical Society, 163, H970–H975.
Liu, Y., Xia, M., Yao, L., Mensi, M., Ren, D., Grätzel, M., Sivula, K., & Guijarro, N. (2021). Spectroelectrochemical and chemical evidence of surface passivation at zinc ferrite (ZnFe2O4) photoanodes for solar water oxidation. Advanced Functional Materials, 31, 2010081.
Yourey, J. E., Pyper, K. J., Kurtz, J. B., & Bartlett, B. M. (2013). Chemical stability of CuWO4 for photoelectrochemical water oxidation. Journal of Physical Chemistry C, 117, 8708–8718.
Lhermitte, C. R., & Bartlett, B. M. (2016). Advancing the chemistry of CuWO4 for photoelectrochemical water oxidation. Accounts of Chemical Research, 49, 1121–1129.
Article CAS PubMed Google Scholar
Hill, J. C., & Choi, K.-S. (2013). Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. Journal of Materials Chemistry A, 1, 5006–5014.
Pyper, K. J., Yourey, J. E., & Bartlett, B. M. (2013). Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state. Journal of Physical Chemistry C, 117, 24726–24732.
Grigioni, I., Polo, A., Dozzi, M. V., Ganzer, L., Bozzini, B., Cerullo, G., & Selli, E. (2021). Ultrafast charge carrier dynamics in CuWO4 photoanodes. Journal of Physical Chemistry C, 125, 5692–5699.
Wu, Z., Zhao, Z., Cheung, G., Doughty, R. M., Ballestas-Barrientos, A. R., Hirmez, B., Han, R., Maschmeyer, T., & Osterloh, F. E. (2018). Role of surface states in photocatalytic oxygen evolution with CuWO4 particles. Journal of the Electrochemical Society, 166, H3014–H3019.
Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., & Bisquert, J. (2012). Water oxidation at hematite photoelectrodes: The role of surface states. Journal of the American Chemical Society, 134, 4294–4302.
Article CAS PubMed Google Scholar
Wang, D., Bassi, P., Qi, H., Zhao, X., Gurudayal, W., & L., Xu, R., Sritharan, T. & Chen, Z. (2016). Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation. Materials (Basel), 9, 348.
Pilli, S. K., Deutsch, T. G., Furtak, T. E., Brown, L. D., Turner, J. A., & Herring, A. M. (2013). BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Physical Chemistry Chemical Physics: PCCP, 15, 3273–3278.
Article CAS PubMed Google Scholar
Rodríguez-Gutiérrez, I., Djatoubai, E., Rodríguez-Pérez, M., Su, J., Rodríguez-Gattorno, G., Vayssieres, L., & Oskam, G. (2019). Photoelectrochemical water oxidation at FTO|WO3@CuWO4 and FTO|WO3 @CuWO4|BiVO4 heterojunction systems: An IMPS analysis. Electrochimica Acta, 308, 317–327.
Hamann, T. W., Shadabipour, P., & Raithel, A. L. (2020). Charge-carrier dynamics at the CuWO4/electrocatalyst interface for photoelectrochemical water oxidation. ACS Applied Materials & Interfaces, 12, 50592–50599.
Nam, K. M., Cheon, E. A., Shin, W. J., & Bard, A. J. (2015). Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst. Langmuir, 31, 10897–10903.
Article CAS PubMed Google Scholar
Bohra, D., & Smith, W. A. (2015). Improved charge separation via Fe-doping of copper tungstate photoanodes. Physical Chemistry Chemical Physics: PCCP, 17, 9857–9866.
Article CAS PubMed Google Scholar
Li, C., & Diao, P. (2020). Fluorine doped copper tungsten nanoflakes with enhanced charge separation for efficient photoelectrochemical water oxidation. Electrochimica Acta, 352, 136471–136479.
Polo, A., Nomellini, C., Grigioni, I., Dozzi, M. V., & Selli, E. (2020). Effective visible light exploitation by copper Molybdo-tungstate photoanodes. ACS Applied Energy Materials, 3, 6956–6964.
Article CAS PubMed PubMed Central Google Scholar
Hill, J. C., Ping, Y., Galli, G. A., & Choi, K.-S. (2013). Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption. Energy & Environmental Science, 6, 2440–2446.
Ye, W., Chen, F., Zhao, F., Han, N., & Li, Y. (2016). CuWO4 nanoflake array-based single-junction and heterojunction photoanodes for photoelectrochemical water oxidation. ACS Applied Materials & Interfaces, 8, 9211–9217.
Hu, D., Diao, P., Xu, D., Xia, M., Gu, Y., Wu, Q., Li, C., & Yang, S. (2016). Copper (II) tungstate nanoflake array films: Sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting. Nanoscale, 3, 5892–5901.
Fan, L., Sunarso, J., Zhang, X., Xiong, X., He, L., Luo, L., Wang, F., Fan, Z., Wu, C., Han, D., Wong, N. H., Wang, Y., Chen, G., & Chen, W. (2022). Regulating the hole transfer from CuWO4 photoanode to NiWO4 electrocatalyst for enhanced water oxidation performance. International Journal of Hydrogen Energy, 47, 20153–20165.
Comments (0)