Methylobacterium spp. mitigation of UV stress in mung bean (Vigna radiata L.)

Williamson, C. E., Neale, P. J., Hylander, S., Rose, K. C., Figueroa, F. L., Robinson, S. A., Häder, D. P., Wängberg, S. Å., & Worrest, R. C. (2019). The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochemical & Photobiological Sciences, 18, 717–746.

Article  CAS  Google Scholar 

Molina, M. J., & Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810–812.

Article  CAS  Google Scholar 

Vanhaelewyn, L., van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: The plant-microorganism context. Frontiers in Plant Science, 11, 597642.

Article  PubMed  PubMed Central  Google Scholar 

Kataria, S., Jajoo, A., & Guruprasad, K. N. (2014). Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B: Biology, 137, 55–66.

Article  CAS  PubMed  Google Scholar 

Zhu, P., & Yang, L. (2015). Ambient UVB radiation inhibits the growth and physiology of Brassica napus L. on the Qinghai-Tibetan plateau. Field Crop Research, 171, 79–85.

Article  Google Scholar 

Nawkar, G. M., Maibam, P., Park, J. H., Sahi, V. P., Lee, S. Y., & Kang, C. H. (2013). UV-induced cell death in plants. International Journal of Molecular Sciences, 14, 1608–1628.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thapa, S., & Prasanna, R. (2018). Prospecting the characteristics and significance of the phyllosphere microbiome. Annals of Microbiology, 68, 229–245.

Article  CAS  Google Scholar 

Gamit, H., & Amaresan, N. (2023). Role of methylotrophic bacteria in managing abiotic stress for enhancing agricultural production: A review. Pedosphere, 33, 49–60.

Article  Google Scholar 

Harley, P., Greenberg, J., Niinemets, Ü., & Guenther, A. (2007). Environmental controls over methanol emission from leaves. Biogeosciences, 4, 1083–1099.

Article  CAS  Google Scholar 

Yurimoto, H., Shiraishi, K., & Sakai, Y. (2021). Physiology of methylotrophs living in the phyllosphere. Microorganisms, 9, 809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aydogan, E. L., Olga, B., Martin, H., Young, H. C., Jansen-Willems, A. B., Gerald, M., Christoph, M., Peter, K., & Stefanie, P. G. (2020). Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and-independent study of the grassland phyllosphere of a long-term warming field experiment. FEMS Microbiology Ecology, 96, fiaa087.

Article  CAS  PubMed  Google Scholar 

Dourado, M. N., Neves, A. C., & A., Santos, D. S., & Araújo, W. L. (2015). Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Research International, 2015, 909016.

Article  PubMed  PubMed Central  Google Scholar 

Kaparullina, E. N., Trotsenko, Y. A., & Doronina, N. V. (2017). Methylobacillus methanolivorans sp. nov., a novel non-pigmented obligately methylotrophic bacterium. International Journal Systematic and Evolutionary Microbiology, 67, 425–431.

Article  CAS  Google Scholar 

Ye, R. W., Yao, H., Stead, K., Wang, T., Tao, L., Cheng, Q., Sharpe, P. L., Suh, W., Nagel, E., Arcilla, D., & Dragotta, D. (2007). Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. Journal of Industrial Microbiology and Biotechnology, 34, 289.

Article  CAS  PubMed  Google Scholar 

Yoshida, S., Hiradate, S., Koitabashi, M., Kamo, T., & Tsushima, S. (2017). Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology, 167, 168–175.

Article  CAS  PubMed  Google Scholar 

Kamo, T., Hiradate, S., Suzuki, K., Fujita, I., Yamaki, S., Yoneda, T., Koitabashi, M., & Yoshida, S. (2018). Methylobamine, a UVA-absorbing compound from the plant-associated bacteria Methylobacterium sp. Natural Product Communications, 13, 141–143.

Article  Google Scholar 

van Miloradovic, D., & M., Merl-Pham, J., Ghirardo, A., Fink, S., Polle, A., Schnitzler, J. P., & Rosenkranz, M. (2020). Root isoprene formation alters lateral root development. Plant, Cell & Environment, 43, 2207–2223.

Article  Google Scholar 

Gao, Q., & Garcia-Pichel, F. (2011). Microbial ultraviolet sunscreens. Nature Reviews Microbiology, 9, 791–802.

Article  CAS  PubMed  Google Scholar 

Bajpai, A., Mahawar, H., Dubey, G., Atoliya, N., Parmar, R., Devi, M. H., Kollah, B., & Mohanty, S. R. (2022). Prospect of pink pigmented facultative methylotrophs in mitigating abiotic stress and climate change. Journal of Basic Microbiology, 62, 889–899.

Article  CAS  PubMed  Google Scholar 

Gamit, H. A., Naik, H., Chandarana, K. A., Chandwani, S., & Amaresan, N. (2023). Secondary metabolites from methylotrophic bacteria: Their role in improving plant growth under a stressed environment. Environmental Science and Pollution Research, 30, 28563–28574.

Article  CAS  PubMed  Google Scholar 

Moss, A. W., & Kim, J. J. (2021). The effect of UV irradiation on Vigna radiata seeds (mung beans) germination and growth. Science One Program, 2019–2020.

Pal, M., Sharma, A., Abrol, Y. P., & Sengupta, U. K. (1997). Exclusion of UV-B radiation from normal solar spectrum on the growth of mung bean and maize. Agriculture, Ecosystems & Environment, 61, 29–34.

Article  CAS  Google Scholar 

Corpe, W. A. (1985). A method for detecting methylotrophic bacteria on solid surfaces. Journal of Microbiological Methods, 3, 215–221.

Article  Google Scholar 

Gamit, H. A., & Amaresan, N. (2021). Methylobacterium. In N. Amaresan, D. Amin, & P. Patel (Eds.), Practical handbook on agricultural microbiology (pp. 111–118). Humana Press, Springer.

Google Scholar 

Musilova, M., Wright, G., Ward, J. M., & Dartnell, L. R. (2015). Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology, 15, 1076–1090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, K. (2001). Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology, 56, 2–4.

Article  Google Scholar 

McDonald, I. R., & Murrell, J. C. (1997). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Applied and Environmental Microbiology, 63, 3218–3224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya, 17, 362–370.

CAS  Google Scholar 

Jensen, H. L. (1942). Nitrogen fixation in leguminous plants, I. General characters of root nodule bacteria isolated from species Medicago and Triflolium. Proceedings of Linnean Society New South Wales., 67, 98–108.

CAS  Google Scholar 

Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118, 10–15.

Article  CAS  PubMed  Google Scholar 

Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.

Article  CAS  PubMed  Google Scholar 

Sundin, G. W., & Jacobs, J. L. (1999). Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.). Microbial Ecology, 38, 27–38.

Article  CAS  PubMed  Google Scholar 

Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10, 828–840.

Article  CAS  PubMed  Google Scholar 

Vanhaelewyn, L., Prinsen, E., van Der Straeten, D., & Vandenbussche, F. (2016). Hormone-controlled UV-B responses in plants. Journal of Experimental Botany, 67, 4469–4482.

Article  CAS  PubMed  Google Scholar 

Finkel, O. M., Burch, A. Y., Lindow, S. E., Post, A. F., & Belkin, S. (2011). Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Applied and Environmental Microbiology, 77, 7647–7655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etemadifar, Z., Gholami, M., & Derikvand, P. (2016). UV-resistant bacteria with multiple-stress tolerance isolated from desert areas in Iran. Geomicrobiology Journal, 33, 1–7.

Article  CAS  Google Scholar 

Yurimoto, H., & Sakai, Y. (2019). Methylotrophic yeasts: Current understanding of their C1-metabolism and its regulation by sensing methanol for survival on plant leaves. Current Issues in Molecular Biology, 33, 197–210.

Article  PubMed  Googl

Comments (0)

No login
gif