Xu, J., Xia, X., Wang, X., Xu, C., Wang, P., Xiang, J., et al. (2010). Sonodynamic action of pyropheophorbide—A methyl ester in liver cancer cells. Journal of Ultrasound in Medicine, 29(7), 1031–1037
Suehiro, S., Ohnishi, T., Yamashita, D., Kohno, S., Inoue, A., Nishikawa, M., et al. (2018). Enhancement of antitumor activity by using 5-ALA-mediated sonodynamic therapy to induce apoptosis in malignant gliomas: Significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. Journal of Neurosurgery, 129(6), 1416–1428
Article CAS PubMed Google Scholar
Osaki, T., Uto, Y., Ishizuka, M., Tanaka, T., Yamanaka, N. & Kurahashi, T. et al.(2017). Artesunate enhances the cytotoxicity of 5-aminolevulinic acid-based sonodynamic therapy against mouse mammary tumor cells in vitro. Molecules, 22, 4
Shen, J., Cao, S., Sun, X., Pan, B., Cao, J., Che, D., et al. (2018). Sinoporphyrin sodium-mediated sonodynamic therapy inhibits RIP3 expression and induces apoptosis in the H446 small cell lung cancer cell line. Cellular Physiology and Biochemistry, 51(6), 2938–2954
Article CAS PubMed Google Scholar
Rosenthal, I., Sostaric, J. Z., & Riesz, P. (2004). Sonodynamic therapy—A review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry, 11(6), 349–363
Article CAS PubMed Google Scholar
Wan, G. Y., Liu, Y., Chen, B. W., Liu, Y. Y., Wang, Y. S., & Zhang, N. (2016). Recent advances of sonodynamic therapy in cancer treatment. Cancer Biology & Medicine, 13(3), 325–338
Snehota, M., Vachutka, J., Ter Haar, G., Dolezal, L., & Kolarova, H. (2020). Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. Ultrasonics, 107, 106167
Geng, C., Zhang, Y., Hidru, T. H., Zhi, L., Tao, M., Zou, L., et al. (2018). Sonodynamic therapy: A potential treatment for atherosclerosis. Life Sciences, 207, 304–313
Article CAS PubMed Google Scholar
Ninomiya, K., Noda, K., Ogino, C., Kuroda, S. I., & Shimizu, N. (2014). Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrasonics Sonochemistry, 21(1), 289–294
Article CAS PubMed Google Scholar
Secomski, W., Bilmin, K., Kujawska, T., Nowicki, A., Grieb, P., & Lewin, P. A. (2017). In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome. Ultrasonics, 77, 203–213
Article PubMed PubMed Central Google Scholar
Miyoshi, N., Sostaric, J. Z., & Riesz, P. (2003). Correlation between sonochemistry of surfactant solutions and human leukemia cell killing by ultrasound and porphyrins. Free Radical Biology & Medicine, 34(6), 710–719
Zhu, B., Liu, Q., Wang, Y., Wang, X., Wang, P., Zhang, L., et al. (2010). Comparison of accumulation, subcellular location, and sonodynamic cytotoxicity between hematoporphyrin and protoporphyrin IX in L1210 cells. Chemotherapy, 56(5), 403–410
Article CAS PubMed Google Scholar
Liu, Y., Bai, H., Wang, H., Wang, X., Liu, Q., Zhang, K., et al. (2019). Comparison of hypocrellin B-mediated sonodynamic responsiveness between sensitive and multidrug-resistant human gastric cancer cell lines. Journal of Medical Ultrasonics, 46(1), 15–26
Zhang, P., Ren, Z., Chen, Z., Zhu, J., Liang, J., Liao, R., et al. (2018). Iron oxide nanoparticles as nanocarriers to improve chlorin e6-based sonosensitivity in sonodynamic therapy. Drug Design, Development and Therapy, 12, 4207–4216
Article CAS PubMed PubMed Central Google Scholar
Chang, N., Qin, D., Wu, P., Xu, S., Wang, S., & Wan, M. (2019). IR780 loaded perfluorohexane nanodroplets for efficient sonodynamic effect induced by short-pulsed focused ultrasound. Ultrasonics Sonochemistry, 53, 59–67
Article CAS PubMed Google Scholar
Prescott, M., Mitchell, J., Totti, S., Lee, J., Velliou, E., & Bussemaker, M. (2018). Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro. Ultrasonics Sonochemistry, 40(Pt B), 72–80
Article CAS PubMed Google Scholar
Varchi, G., Foglietta, F., Canaparo, R., Ballestri, M., Arena, F., Sotgiu, G., et al. (2015). Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment. Nanomedicine, 10(23), 3483–3494
Article CAS PubMed Google Scholar
Osaki, T., Yokoe, I., Uto, Y., Ishizuka, M., Tanaka, T., Yamanaka, N., et al. (2016). Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrasonics Sonochemistry, 28, 161–168
Article CAS PubMed Google Scholar
Chen, H. J., Zhou, X. B., Gao, Y., Zheng, B. Y., Tang, F. X., & Huang, J. D. (2014). Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discovery Today, 19(4), 502–509
Article CAS PubMed Google Scholar
Liu, Q., Li, X., Xiao, L., Wang, P., Wang, X., & Tang, W. (2008). Sonodynamically induced antitumor effect of hematoporphyrin on Hepatoma 22. Ultrasonics Sonochemistry, 15(6), 943–948
Article CAS PubMed Google Scholar
Yumita, N., Nishigaki, R., Umemura, K., & Umemura, S. I. (1989). Hematoporphyrin as a sensitizer of cell‐damaging effect of ultrasound. Japanese Journal of Cancer Research, 80(3), 219–222
Article CAS PubMed PubMed Central Google Scholar
Su, X., Wang, P., Wang, X., Guo, L., Li, S., & Liu, Q. (2013). Involvement of MAPK activation and ROS generation in human leukemia U937 cells undergoing apoptosis in response to sonodynamic therapy. International Journal of Radiation Biology, 89(11), 915–927
Article CAS PubMed Google Scholar
Zheng, R., Zhang, W., Wang, X., & Gao, H. (2010). The sonodynamic effects of Chlorin e6 on the proliferation of human lung adenocarcinoma cell SPCA-1. Zhongguo Fei Ai Za Zhi, 13(3), 201–205
Kimura, T., Sakamoto, T., Leveque, J.-M., Sohmiya, H., Fujita, M., Ikeda, S., et al. (1996). Standardization of ultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry 3(3), S157–S161
O’Brien, W. D. (2007). Ultrasound—Biophysics mechanisms. Progress in Biophysics and Molecular Biology, 93(1–3), 212–255
Kasaai, M. R. (2013). Input power-mechanism relationship for ultrasonic irradiation food and polymer applications. Natural Science, 5(8), 14–22
Barati, A. H., Mokhtari-Dizaji, M., Mozdarani, H., Bathaie, Z., & Hassan, Z. M. (2007). Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound. Ultrasonics Sonochemistry, 14(6), 783–789
Article CAS PubMed Google Scholar
Kuroki, M., Hachimine, K., Abe, H., Shibaguchi, H., Kuroki, M., Maekawa, S.-I, et al. (2007). Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Research, 27(6A), 3673–3678
Ter Haar, G. (2011). Ultrasonic imaging: Safety considerations. Interface Focus, 1(4), 686–697
Article PubMed PubMed Central Google Scholar
Lin, X. H., Song, J. B., Chen, X. Y., & Yang, H. H. (2020). Ultrasound activated sensitizers and applications. Angewandte Chemie International Edition, 59, 2–24
Wang, P., Wang, X. B., Liu, Q. H., Tang, W., & Li, T. (2008). Enhancement of ultrasonically induced cytotoxic effect by hematoporphyrin in vitro. Chemotherapy, 54(5), 364–371
Article CAS PubMed Google Scholar
Hensel, K., Mienkina, M. P., & Schmitz, G. (2011). Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound in Medicine and Biology, 37(12), 2105–2115
Poltawski, L., & Watson, T. (2007). Relative transmissivity of ultrasound coupling agents commonly used by therapists in the UK. Ultrasound in Medicine and Biology, 33(1), 120–128
Thanh Nguyen, T., Asakura, Y., Koda, S., & Yasuda, K. (2017). Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrasonics Sonochemistry, 39, 301–306
Armour, E. P., & Corry, P. M. (1982). Cytotoxic effects of ultrasound in vitro dependence on gas content, frequency, radical scavengers, and attachment. Radiation Research, 89(2), 369–380
Article CAS PubMed Google Scholar
Pang, X., Xu, C. S., Jiang, Y., Xiao, Q. C., & Leung, A. W. (2016). Natural products in the discovery of novel sonosensitizers. Pharmacology & Therapeutics, 162, 144–151
Sugita, N., Kawabata, K., Sasaki, K., Sakata, I., & Umemura, S. (2007). Synthesis of amphiphilic derivatives of rose bengal and their tumor accumulation. Bioconjugate Chemistry, 18(3), 866–873
Article CAS PubMed Google Scholar
Yumita, N., & Umemura, S. (2003). Sonodynamic therapy with photofrin II on AH130 solid tumor. Pharmacokinetics, tissue distribution and sonodynamic antitumoral efficacy of photofrin II. Cancer Chemotherapy and Pharmacology, 51(2), 174–178
Comments (0)