Evaluation of photobiomodulation therapy (117 and 90s) on pain, regeneration, and epigenetic factors (HDAC 2, DNMT3a) expression following spinal cord injury in a rat model

Leibinger, M., et al. (2019). GSK3-CRMP2 signaling mediates axonal regeneration induced by Pten knockout. Communications Biology, 2(1), 1–13.

Article  CAS  Google Scholar 

Chambel, S. S., Tavares, I., & Cruz, C. D. (2020). Chronic pain after spinal cord injury: Is there a role for neuron-immune dysregulation? Frontiers in Physiology, 11, 748.

Article  PubMed  PubMed Central  Google Scholar 

Van Gorp, S., et al. (2015). Pain prevalence and its determinants after spinal cord injury: A systematic review. European Journal of Pain, 19(1), 5–14.

Article  PubMed  Google Scholar 

Hagen, E. M., & Rekand, T. (2015). Management of neuropathic pain associated with spinal cord injury. Pain and therapy, 4(1), 51–65.

Article  PubMed  PubMed Central  Google Scholar 

Austin, P. J., & Moalem-Taylor, G. (2010). The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. Journal of Neuroimmunology, 229(1–2), 26–50.

Article  CAS  PubMed  Google Scholar 

Zhao, H., et al. (2017). The role of microglia in the pathobiology of neuropathic pain development: what do we know? BJA: British Journal of Anaesthesia, 118(4), 504–516.

Article  CAS  PubMed  Google Scholar 

Descalzi, G., et al. (2015). Epigenetic mechanisms of chronic pain. Trends in Neurosciences, 38(4), 237–246.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, D., et al. (2021). Epigenetic modifications in neuropathic pain. Molecular Pain, 17, 17448069211056768.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38.

Article  CAS  PubMed  Google Scholar 

Wang, Y., et al. (2011). Intrathecal 5-azacytidine inhibits global DNA methylation and methyl-CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Research, 1418, 64–69.

Article  CAS  PubMed  Google Scholar 

Tochiki, K. K., et al. (2012). The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Molecular Pain. https://doi.org/10.1186/1744-8069-8-14

Article  PubMed  PubMed Central  Google Scholar 

Liang, L., & Tao, Y.-X. (2018). Expression of acetyl-histone H3 and acetyl-histone H4 in dorsal root ganglion and spinal dorsal horn in rat chronic pain models. Life Sciences, 211, 182–188.

Article  CAS  PubMed  Google Scholar 

Li, K., et al. (2014). Epigenetic upregulation of Cdk5 in the dorsal horn contributes to neuropathic pain in rats. NeuroReport, 25(14), 1116–1121.

Article  CAS  PubMed  Google Scholar 

Cherng, C.-H., et al. (2014). Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. Journal of the Formosan Medical Association, 113(8), 513–520.

Article  CAS  PubMed  Google Scholar 

Zhang, Z., et al. (2011). Epigenetic suppression of GAD65 expression mediates persistent pain. Nature Medicine, 17(11), 1448–1455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanao-Kanda, M., et al. (2020). Viral vector-mediated gene transfer of glutamic acid decarboxylase for chronic pain treatment: A literature review. Human Gene Therapy, 31(7–8), 405–414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dima, R., et al. (2017). Review of literature on low-level laser therapy benefits for nonpharmacological pain control in chronic pain and osteoarthritis. Trials, 5, 6.

Google Scholar 

Janzadeh, A., et al. (2020). The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiology & Behavior, 227, 113141.

Article  CAS  Google Scholar 

Ramezani, F., et al. (2020). Photobiomodulation for spinal cord injury: A systematic review and meta-analysis. Physiology & Behavior, 224, 112977.

Article  CAS  Google Scholar 

Mojarad, N., et al. (2018). The role of low level laser therapy on neuropathic pain relief and interleukin-6 expression following spinal cord injury: an experimental study. Journal of Chemical Neuroanatomy, 87, 60–70.

Article  CAS  PubMed  Google Scholar 

Neshasteh-Riz, A., et al. (2022). Optimization of the duration and dose of photobiomodulation therapy (660 nm laser) for spinal cord injury in rats. Photobiomodulation, Photomedicine, and Laser Surgery, 40(7), 488–498.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janzadeh, A., et al. (2016). Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model. Lasers in Medical Science, 31, 1863–1869.

Article  PubMed  Google Scholar 

Azim, K., & Butt, A. M. (2011). GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia, 59(4), 540–553.

Article  PubMed  Google Scholar 

Yousefifard, M., et al. (2016). Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Research & Therapy, 7(1), 1.

Article  Google Scholar 

Janzadeh, A., et al. (2017). Combine effect of Chondroitinase ABC and low level laser (660ánm) on spinal cord injury model in adult male rats. Neuropeptides, 65, 90–99.

Article  CAS  PubMed  Google Scholar 

Hosseini, M., et al. (2020). Simultaneous intrathecal injection of muscimol and endomorphin-1 alleviates neuropathic pain in rat model of spinal cord injury. Brain and Behavior, 10(5), e01576.

Article  PubMed  PubMed Central  Google Scholar 

Ramezani, F., et al. (2021). Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers in Medical Science. https://doi.org/10.1007/s10103-021-03277-2

Article  PubMed  Google Scholar 

Behroozi, Z., et al. (2023). Evaluation of epigenetic (HDAC, DNMT) and pain (Gad65, TGF) factors following photobiomodulation therapy in a neuropathic pain model. Photochemistry and Photobiology. https://doi.org/10.1111/php.13824

Article  PubMed  Google Scholar 

Basso, D. M., Beattie, M. S., & Bresnahan, J. C. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of Neurotrauma, 12(1), 1–21.

Article  CAS  PubMed  Google Scholar 

Chaplan, S. R., et al. (1994). Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods, 53(1), 55–63.

Article  CAS  PubMed  Google Scholar 

Yoon, C., et al. (1994). Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain, 59(3), 369–376.

Article  PubMed  Google Scholar 

Hargreaves, K., et al. (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 32(1), 77–88.

Article  CAS  PubMed  Google Scholar 

Maximow, A. A. (1927). Development of non-granular leucocytes (lymphocytes and monocytes) into polyblasts (macrophages) and fibroblasts in vitro. Proceedings of the Society for Experimental Biology and Medicine, 24(6), 570–572.

Article  Google Scholar 

Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314–1318.

Article  CAS  PubMed  Google Scholar 

Behroozi, Z., et al. (2021). Platelet-rich plasma in umbilical cord blood reduces neuropathic pain in spinal cord injury by altering the expression of ATP receptors. Physiology & Behavior, 228, 113186.

Article  CAS  Google Scholar 

Fischer, A. H., et al. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols, 2008(5), p.pdb.prot4986.

Article  Google Scholar 

Park, J., et al. (2018). Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. Journal of Controlled Release, 290, 88–101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madrid, A., et al. (2021). DNA methylation and hydroxymethylation have distinct genome-wide profiles related to axonal regeneration. Epigenetics, 16(1), 64–78.

Article  PubMed  Google Scholar 

Saha, R., & Pahan, K. (2006). HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis. Cell Death & Differentiation, 13(4), 539–550.

Article  CAS 

Comments (0)

No login
gif