Weerapana, E., Wang, C., Simon, G. M., Richter, F., Khare, S., Dillon, M. B. D., Bachovchin, D. A., Mowen, K., Baker, D., & Cravatt, B. F. (2010). Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 468, 790–795.
Article CAS PubMed PubMed Central Google Scholar
Paulsen, C. E., & Carroll, K. S. (2013). Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chemical Reviews, 113, 4633–4679.
Article CAS PubMed PubMed Central Google Scholar
Hu, S. L., Lu, P. L., Zhou, S. Y., Kang, T., Hai, A., Ma, Y. R., Liu, Y. Q., Ke, B. W., & Li, M. Y. (2020). Bioluminescence imaging of exogenous & endogenous cysteine in vivo with a highly selective probe. Bioorganic & Medicinal Chemistry Letters, 30, 126968.
Gan, Y. B., Yin, G. X., Yu, T., Zhang, Y. Y., Li, H. T., & Yin, P. (2020). A novel fluorescent probe for selective imaging of cellular cysteine with large Stokes shift and high quantum yield. Talanta, 210, 120612.
Article CAS PubMed Google Scholar
Zhu, M. Q., Wang, L. J., Wu, X. Q., Na, R. S., Wang, Y., Li, Q. X., & Hammock, B. D. (2019). A novel and simple imidazo[1,2-a]pyridine fluorescent probe for the sensitive and selective imaging of cysteine in living cells and zebrafish. Analytica Chimica Acta, 1058, 155–165.
Article CAS PubMed PubMed Central Google Scholar
Zhu, H. C., Zhang, H. M., Liang, C. X., Liu, C. Y., Jia, P., Li, Z. L., Yu, Y. M., Zhang, X., Zhu, B. C., & Sheng, W. L. (2019). A novel highly sensitive fluorescent probe for bioimaging biothiols and its applications in distinguishing cancer cells from normal cells. The Analyst, 144, 7010–7016.
Article CAS PubMed Google Scholar
Zou, W., Chen, X. J., Huan, C., Gu, T. T., Xia, J. Y., Chen, C., & Gong, F. C. (2017). An effective signal enhancement strategy for sensing cysteine based on aluminium-initiated emission. Analytical Methods, 9, 6155–6160.
Yin, C. X., Xiong, K. M., Huo, F. J., Salamanca, J. C., & Strongin, R. M. (2017). Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH. Angewandte Chemie International Edition, 56, 13188–13198.
Article CAS PubMed Google Scholar
Sato, Y., Iwata, T., Tokutomi, S., & Kandori, H. (2005). Reactive cysteine is protonated in the triplet excited state of the LOV2 domain in adiantum phytochrome. Journal of the American Chemical Society, 127, 1088–1089.
Article CAS PubMed Google Scholar
Rusin, O., Luce, N. S., Agbaria, R. A., Escobedo, J. O., Jiang, S., Warner, I. M., Dawan, F. B., Lian, K., & Strongin, R. M. (2004). Visual detection of cysteine and homocysteine. Journal of the American Chemical Society, 126, 438–439.
Article CAS PubMed PubMed Central Google Scholar
Guan, X. M., Hoffman, B., Dwivedi, C., & Matthees, D. P. (2003). A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 31, 251–261.
Article CAS PubMed Google Scholar
Potesil, D., Petrlova, J., Adam, V., Vacek, J., Klejdus, B., Zehnalek, J., Trnkova, L., Havel, L., & Kizek, R. (2005). Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. Journal of Chromatography A, 1084, 134–144.
Article CAS PubMed Google Scholar
Ryant, P., Dolezelova, E., Fabrik, I., Baloun, J., Adam, V., Babula, P., & Kizek, R. (2008). Electrochemical determination of low molecular mass thiols content in potatoes (Solanum tuberosum) cultivated in the presence of various sulphur forms and infected by late blight (Phytophora infestans). Sensors, 8, 3165–3182.
Article CAS PubMed PubMed Central Google Scholar
Zhou, Y., & Yoon, J. Y. (2012). ChemInform Abstract: Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chemical Society Reviews, 41, 52–67.
Article CAS PubMed Google Scholar
Chen, X. Q., Pradhan, T. H., Wang, F., Kim, J. S., & Yoon, J. Y. (2012). Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews, 112, 1910–1956.
Article CAS PubMed Google Scholar
You, L., Zha, D. J., & Anslyn, E. V. (2015). Recent advances in supramolecular analytical chemistry using optical sensing. Chemical Reviews, 115, 7840–7892.
Article CAS PubMed Google Scholar
Wen, Y., Huo, F. J., & Yin, C. X. (2019). Organelle targetable fluorescent probes for hydrogen peroxide. Chinese Chemical Letters, 30, 1834–1842.
Cao, X. W., Lin, W. Y., & Yu, Q. X. (2011). A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin Scaffold. Journal of Organic Chemistry, 76, 7423–7430.
Article CAS PubMed Google Scholar
Hu, M. M., Fan, J. L., Li, H. L., Song, K. D., Wang, S., Cheng, G. H., & Peng, X. J. (2011). Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells. Organic & Biomolecular Chemistry, 9, 980–983.
Wang, Q. Q., Wang, H., Huang, J. X., Li, N., Gu, Y. Q., & Wang, P. (2017). Novel NIR fluorescent probe with dual models for sensitively and selectively monitoring and imaging Cys in living cells and mice. Sensors and Actuators, B: Chemical, 253, 400–406.
Wang, P., Wang, Q. Q., Huang, J. X., Li, N., & Gu, Y. Q. (2017). A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Biosensors & Bioelectronics, 92, 583–588.
Wang, W. H., Rusin, O., Xu, X. Y., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I. M., & Strongin, R. M. (2005). Detection of homocysteine and cysteine. Journal of the American Chemical Society, 127, 15949–15958.
Article CAS PubMed PubMed Central Google Scholar
Chen, Z. Y., Sun, Q., Yao, Y. H., Fan, X. X., Zhang, W. B., & Qian, J. H. (2017). Highly sensitive detection of cysteine over glutathione and homo-cysteine: New insight into the Michael addition of mercapto group to maleimide. Biosensors & Bioelectronics, 91, 553–559.
Wang, Y. J., Liu, Z. R., Ren, G. M., Kong, X. Q., & Lin, W. Y. (2017). A fast-response two-photon fluorescent probe for the detection of Cys over GSH/Hcy with a large turn-on signal and its application in living tissues. Journal of Materials Chemistry B, 5, 134–138.
Article CAS PubMed Google Scholar
Dai, X., Wu, Q. H., Wang, P. C., Tian, J., Xu, Y., Wang, S. Q., Miao, J. Y., & Zhao, B. X. (2014). A simple and effective coumarin-based fluorescent probe for cysteine. Biosensors & Bioelectronics, 59, 35–39.
An, B. B., Song, S. Y., Wen, K. K., Wu, W. P., Yuan, H. J., Zhu, Q. L., Guo, X. G., & Zhang, J. L. (2017). Theoretical insights into the ultrafast excited-state intramolecular proton transfer (ESIPT) mechanism in a series of amide-based N-H∙∙∙N hydrogen-bonding compounds. Organic Electronics, 45, 1–8.
Ren, H. X., Huo, F. J., Liu, X. G., & Yin, C. X. (2021). An ESIPT-induced NIR fluorescent probe to visualize mitochondrial sulfur dioxide during oxidative stress in vivo. Chemical Communications, 57, 655–658.
Article CAS PubMed Google Scholar
Chumak, A. Y., Denysieva, Y. O., Kolomoitsev, O. O., Kotlyar, V. M., Shvets, E. H., & Doroshenko, A. O. (2020). N-ethyl substituted 2-benzimidazolyl-3-hydroxychromone: Atypical to highly fluorescent dyes of flavonol series excited state intramolecular proton transfer to nitrogen. Journal of Luminescence, 223, 117206.
Petdee, S., Chaiwai, C., Benchaphanthawee, W., Nalaoh, P., Kungwan, N., Namuangruk, S., Sudyoadsuk, T., & Promarak, V. (2021). Imidazole-based solid-state fluorophores with combined ESIPT and AIE features as self-absorption-free non-doped emitters for electroluminescent devices. Dyes and Pigments, 193, 109488.
Li, Y. H., Dahal, D., Abeywickrama, C. S., & Pang, Y. (2021). Progress in tuning emission of the excited state intramolecular proton transfer (ESIPT)-based fluorescent probes. ACS Omega, 6, 6547–6553.
Article CAS PubMed PubMed Central Google Scholar
Zhao, X. K., Li, X., Liang, S. Y., Dong, X. W., & Zhang, Z. (2021). 3-Hydroxyflavone derivatives: Promising scaffolds for fluorescent imaging in cells. RSC Advances, 11, 28851.
Article CAS PubMed PubMed Central Google Scholar
Li, M., Zheng, K. B., Chen, H., Liu, X., Xiao, S. Z., Yan, J. Y., Tan, X. A., & Zhang, N. N. (2019). Spectrochim. Acta A Mol. Biomol., 217, 1–7.
Li, C. M., Guo, W., Zhou, P. W., & Tang, Z. (2019). The effects of the heteroatom and position on excited-state intramolecular proton transfer of new hydroxyphenyl benzoxazole derivatives: A time-dependent density functional theory study. Organic Chemistry Frontiers, 6, 1807–1815.
Cao, B. F., Li, Y., Zhou, Q., Li, B., Su, X., Yin, H., & Shi, Y. (2021). Synergistically improving myricetin ESIPT and antioxidant activity via dexterously trimming atomic electronegativity. Journal of Molecular Liquids, 325, 115272.
Song, L. Y., Meng, X., Zhao, J. F., Han, H. Y., & Zheng, D. Y. (2021). Effects of azole rings with different chalcogen atoms on ESIPT behavior for benzochalcogenazol yl-substituted hydroxyfluorenes. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 264, 120296–120296.
Comments (0)