Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15, 1243–1253. https://doi.org/10.15252/embr.201439246.
Article CAS PubMed PubMed Central Google Scholar
Liu, X. Q., Chen, X. T., Liu, Z. Z., Gu, S. S., He, L. J., Wang, K. P., & Tang, R. Z. (2020). Biomimetic matrix stiffness modulates hepatocellular carcinoma malignant phenotypes and macrophage polarization through multiple modes of mechanical feedbacks. ACS Biomaterials Science & Engineering, 6, 3994–4004. https://doi.org/10.1021/acsbiomaterials.0c00669.
Yang, L., Li, J. W., Zang, G. C., Song, S. J., Sun, Z. W., Li, X. Y., Li, Y. Z., Xie, Z. H., Zhang, G. Y., Gui, N., Zhu, S., Chen, T. T., Cai, Y. K., & Zhao, Y. P. (2023). Pin1/YAP pathway mediates matrix stiffness‐induced epithelial–mesenchymal transition driving cervical cancer metastasis via a non‐Hippo mechanism. Bioengineering & Translational Medicine, 8, e10375. https://doi.org/10.1002/btm2.10375.
Jiang, Y. F., Zhang, H. Y., Wang, J., Liu, Y. L., Luo, T., & Hua, H. (2022). Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. Journal of Hematology & Oncology, 15, 1–15. https://doi.org/10.1186/s13045-022-01252-0.
Li, S., Bai, H. X., Chen, X. Y., Gong, S. N., Xiao, J. M., Li, D., Li, L., Jiang, Y., Li, T. T., Qin, X., Yang, H., Wu, C. H., You, F. M., & Liu, Y. Y. (2020). Soft substrate promotes osteosarcoma cell self-renewal, differentiation, and drug resistance through miR-29b and its target protein spin 1. ACS Biomaterials Science & Engineering, 6, 5588–5598. https://doi.org/10.1021/acsbiomaterials.0c00816.
Chen, Y., Li, P., Peng, Y. T., Xie, X. X., Zhang, Y. X., Jiang, Y., Li, T. T., Qin, X., Li, S., Yang, H., Wu, C. H., Zheng, C., Zhu, J., You, F. M., & Liu, Y. Y. (2021). Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells. Free Radical Biology and Medicine, 172, 590–603. https://doi.org/10.1016/j.freeradbiomed.2021.07.005.
Article CAS PubMed Google Scholar
Zhang, M., Xu, C., Wang, H. Z., Peng, Y. N., Li, H. O., Zhou, Y. J., Liu, S., Wang, F., Liu, L., Chang, Y., Zhao, Q., & Liu, J. (2019). Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating cells. Cell Death & Disease, 10, 1–13. https://doi.org/10.1038/s41419-019-1309-7.
Zeltz, C., Primac, I., Erusappan, P., Alam, J., Noel, A., & Gullberg, D. (2020). Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Seminars in Cancer Biology, 62, 166–181. https://doi.org/10.1016/j.semcancer.2019.08.004.
Article CAS PubMed Google Scholar
Gkretsi, V., & Stylianopoulos, T. (2018). Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Frontiers in Oncology, 8, 145. https://doi.org/10.3389/fonc.2018.00145.
Article PubMed PubMed Central Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix stiffness directs stem cell lineage specification. Cell, 126, 677–689. https://doi.org/10.1016/j.cell.2006.06.044.
Article CAS PubMed Google Scholar
Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L. Q., Chen, C. S., Gao, B. N., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578, 621–626. https://doi.org/10.1038/s41586-020-1998-1.
Article CAS PubMed PubMed Central Google Scholar
Wolf, K., te Lindert, M., Krause, M., Alexander, S., te Riet, J., Willis, A. L., Hoffman, R. M., Figdor, C. G., Weiss, S. J., & Friedl, P. (2013). Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 201, 1069–1084. https://doi.org/10.1083/jcb.201210152.
Article CAS PubMed PubMed Central Google Scholar
Chaudhuri, O., Koshy, S. T., da Cunha, C. B., Shin, J. W., Verbeke, C. S., Allison, K. H., & Mooney, D. J. (2014). Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 13, 970–978. https://doi.org/10.1038/NMAT4009.
Article CAS PubMed Google Scholar
Pietila, E. A., Gonzalez-Molina, J., Moyano-Galceran, L., Jamalzadeh, S., Zhang, K., Lehtinen, L., Turunen, S. P., Martins, T. A., Gultekin, O., Lamminen, T., Kaipio, K., Joneborg, U., Hynninen, J., Hietanen, S., Grenman, S., Lehtonen, R., Hautaniemi, S., Carpen, O., Carlson, J. W., & Lehti, K. (2021). Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nature Communications, 12, 1–19. https://doi.org/10.1038/s41467-021-24009-8.
Gonzalez-Molina, J., Kirchhof, K. M., Rathod, B., Moyano-Galceran, L., Calvo-Noriega, M., Kokaraki, G., Bjorkoy, A., Ehnman, M., Carlson, J. W., & Lehti, K. (2022). Mechanical confinement and DDR1 signalling synergise to regulate collagen-induced apoptosis in rhabdomyosarcoma cells. Advanced Science, 9, 2202552. https://doi.org/10.1002/advs.202202552.
Article PubMed PubMed Central Google Scholar
Lee, J., Ko, P., You, E., Jeong, J., Keum, S., Kim, J., Rahman, M., Lee, D. H., & Rhee, S. (2019). Shwachman-Bodian-Diamond syndrome protein desensitizes breast cancer cells to apoptosis in stiff matrices by repressing the caspase 8-mediated pathway. Animal Cells and Systems, 23, 414–421. https://doi.org/10.1080/19768354.2019.1666030.
Article CAS PubMed PubMed Central Google Scholar
Kilinc, A. N., Han, S. Y., Barrett, L. A., Anandasivam, N., & Nelson, C. M. (2021). Integrin-linked kinase tunes cell–cell and cell-matrix adhesions to regulate the switch between apoptosis and EMT downstream of TGFβ1. Molecular Biology of the Cell, 32, 402–412. https://doi.org/10.1091/mbc.E20-02-0092.
Article CAS PubMed PubMed Central Google Scholar
Yao, B. W., Niu, Y. S., Li, Y. Z., Chen, T. X., Wei, X. Y., & Liu, Q. G. (2020). High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. Journal of Cancer, 11, 6188. https://doi.org/10.7150/jca.45998.
Article CAS PubMed PubMed Central Google Scholar
Bottcher, R. T., Lange, A., & Fassler, R. (2009). How ILK and kindlins cooperate to orchestrate integrin signaling. Current Opinion in Cell Biology, 21, 670–675. https://doi.org/10.1016/j.ceb.2009.05.008.
Article CAS PubMed Google Scholar
Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. Advanced Functional Materials, 22, 4711–4717. https://doi.org/10.1002/adfm.201201156.
Alcaraz, J., Xu, R., Mori, H., Nelson, C. M., Mroue, R., Spencer, V. A., Brownfield, D., Radisky, D. C., Bustamante, C., & Bissell, M. J. (2008). Laminin and biomimetic extracellular stiffness enhance functional differentiation in mammary epithelia. The EMBO Journal, 27, 2829–2838. https://doi.org/10.1038/emboj.2008.206.
Article CAS PubMed PubMed Central Google Scholar
Peng, Y. T., Chen, Z. Y., Chen, Y., Li, S., Jiang, Y., Yang, H., Wu, C. H., You, F. M., Zheng, C., Zhu, J., Tan, Y. H., Qin, X., & Liu, Y. Y. (2019). ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomaterialia, 88, 86–101. https://doi.org/10.1016/j.actbio.2019.02.015.
Article CAS PubMed Google Scholar
Chiu, W. T., Wang, Y. H., Tang, M. J., & Shen, M. R. (2007). Soft substrate induces apoptosis by the disturbance of Ca2+ homeostasis in renal epithelial LLC‐PK1 cells. Journal of Cellular Physiology, 212, 401–410. https://doi.org/10.1002/jcp.21037.
Article CAS PubMed Google Scholar
Wang, Y. H., Chiu, W. T., Wang, Y. K., Wu, C. C., Chen, T. L., Teng, C. F., Chang, W. T., Chang, H. C., & Tang, M. J. (2007). Deregulation of AP-1 proteins in collagen gel-induced epithelial cell apoptosis mediated by low substratum rigidity. Journal of Biological Chemistry, 282, 752–763. https://doi.org/10.1074/jbc.M604801200.
Article CAS PubMed Google Scholar
Wang, K., Wu, F., Seo, B. R., Fischbach, C., Chen, W. S., Hsu, L., & Gourdon, D. (2017). Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biology, 60, 86–95. https://doi.org/10.1016/j.matbio.2016.08.001.
Article CAS PubMed Google Scholar
Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan, L., Rueden, C. T., White, J. G., & Keely, P. J. (2008). Collagen density promotes mammary tumor initiation and progression. BMC Medicine, 6, 11. https://doi.org/10.1186/1741-7015-6-11.
Article CAS PubMed PubMed Central Google Scholar
Levental, K. R., Yu, H. M., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., Fong, S. F. T., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D. L., & Weaver, V. M. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139, 891–906. https://doi.org/10.1016/j.cell.2009.10.027.
Article CAS PubMed PubMed Central Google Scholar
Kisling, A., Lust, R. M., & Katwa, L. C. (2019). What is the role of peptide fragments of collagen I and IV in health and disease? Life Sciences, 228, 30–34. https://doi.org/10.1016/j.lfs.2019.04.042.
Article CAS PubMed Google Scholar
Schlaepfer, D. D., Hanks, S. K., Hunter, T., & van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372, 786–791. https://doi.org/10.1038/372786a0.
Article CAS PubMed Google Scholar
Hess, F., Estrugo, D., Fischer, A., Belka, C., & Cordes, N. (2007). Integrin-linked kinase interacts with caspase-9 and-8 in an adhesion-dependent manner for promoting radiation-induced apoptosis in human leukemia cells. Oncogene, 26, 1372–1384. https://doi.org/10.1038/sj.onc.1209947.
Comments (0)