RNA Nanomedicine: Delivery Strategies and Applications

Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40(6):840–54.

Article  CAS  PubMed  Google Scholar 

Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205–15.

Article  CAS  PubMed  Google Scholar 

Wang C, Zhang Y, Dong Y. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc Chem Res. 2021;54(23):4283–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frangoul H, Altshuler D, Cappellini D, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N Engl J Med. 2021;384(23): e91.

Article  PubMed  Google Scholar 

Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021;39(1):47–55.

Article  CAS  PubMed  Google Scholar 

Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28(3–4):117–29.

Article  CAS  PubMed  Google Scholar 

Rappaport AR, Hong SJ, Scallan CD, Gitlin L, Akoopie A, Boucher GR, et al. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection. Nat Commun. 2022;13(1):3289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderluzzi G, Lou G, Woods S, Schmidt ST, Gallorini S, Brazzoli M, et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J Control Release. 2022;342:388–99.

Article  CAS  PubMed  Google Scholar 

Blakney AK, McKay PF, Hu K, Samnuan K, Jain N, Brown A, et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release. 2021;338:201–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung HN, Lee SY, Lee S, Youn H, Im HJ. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riley RS, Kashyap MV, Billingsley MM, White B, Alameh MG, Bose SK, et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv. 2021;7(3):eaba1028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020;20(3):1578–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20(6):359–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Jozic A, Lin YX, Eygeris Y, Bloom E, Tan XC, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022;16(9):14792–806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortez-Jugo C, Qi AS, Rajapaksa A, Friend JR, Yeo LY. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics. 2015;9(5): 052603.

Article  PubMed  PubMed Central  Google Scholar 

Mo Y, Cheng MHY, D’Elia A, Doran K, Ding L, Chen J, et al. Light-activated siRNA endosomal release (LASER) by porphyrin lipid nanoparticles. ACS Nano. 2023;17(5):4688–703.

Article  CAS  PubMed  Google Scholar 

Massiot J, Rosilio V, Ibrahim N, Yamamoto A, Nicolas V, Konovalov O, et al. Newly synthesized lipid-porphyrin conjugates: evaluation of their self-assembling properties, their miscibility with phospholipids and their photodynamic activity in vitro. Chem-Eur J. 2018;24(72):19179–94.

Article  CAS  PubMed  Google Scholar 

Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, et al. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip. 2023;23(5):1389–409.

Article  CAS  PubMed  Google Scholar 

Rotolo L, Vanover D, Bruno NC, Peck HE, Zurla C, Murray J, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2023;22(3):369–79.

Article  CAS  PubMed  Google Scholar 

Sun YZ, Davis E. Nanoplatforms for targeted stimuli-responsive drug delivery: a review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials. 2021;11(3):746.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.

Article  CAS  PubMed  Google Scholar 

Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, et al. Targeted drug/gene/photodynamic therapy via a stimuli-responsive dendritic-polymer-based nanococktail for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Adv Mater. 2022;34(27): e2201516.

Article  PubMed  Google Scholar 

Rudolph C, Ortiz A, Schillinger U, Jauernig J, Plank C, Rosenecker J. Methodological optimization of polyethylenimine (PEI)-based gene delivery to the lungs of mice via aerosol application. J Gene Med. 2005;7(1):59–66.

Article  CAS  PubMed  Google Scholar 

McLachlan G, Davidson H, Holder E, Davies LA, Pringle IA, Sumner-Jones SG, et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther. 2011;18(10):996–1005.

Article  CAS  PubMed  Google Scholar 

Jiang Z, Cui W, Mager J, Thayumanavan S. Postfunctionalization of noncationic RNA-polymer complexes for RNA delivery. Ind Eng Chem Res. 2019;58(17):6982–91.

Article  CAS  Google Scholar 

Boisguerin P, Konate K, Josse E, Vives E, Deshayes S. Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines. 2021;9(5):583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia N, Ma J, Gao Y, Hu H, Chen D, Zhao X, et al. HA-modified R8-based bola-amphiphile nanocomplexes for effective improvement of siRNA delivery efficiency. ACS Biomater Sci Eng. 2020;6(4):2084–93.

Article  CAS  PubMed  Google Scholar 

Wang H, Liu N, Yang F, Hu N, Wang M, Cui M, et al. Bioengineered protein nanocage by small heat shock proteins delivering mTERT siRNA for enhanced colorectal cancer suppression. ACS Appl Bio Mater. 2022;5(3):1330–40.

Article  CAS  PubMed  Google Scholar 

Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding Y, et al. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 2019;13(11):12357–71.

Article  CAS  PubMed  Google Scholar 

Zhang R, Tang L, Zhao B, Tian Y, Zhou B, Mu Y, et al. A peptide-based small RNA delivery system to suppress tumor growth by remodeling the tumor microenvironment. Mol Pharm. 2021;18(3):1431–43.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif