Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40(6):840–54.
Article CAS PubMed Google Scholar
Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205–15.
Article CAS PubMed Google Scholar
Wang C, Zhang Y, Dong Y. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc Chem Res. 2021;54(23):4283–93.
Article CAS PubMed PubMed Central Google Scholar
Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509–19.
Article CAS PubMed PubMed Central Google Scholar
Frangoul H, Altshuler D, Cappellini D, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N Engl J Med. 2021;384(23): e91.
Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021;39(1):47–55.
Article CAS PubMed Google Scholar
Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–71.
Article CAS PubMed PubMed Central Google Scholar
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28(3–4):117–29.
Article CAS PubMed Google Scholar
Rappaport AR, Hong SJ, Scallan CD, Gitlin L, Akoopie A, Boucher GR, et al. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection. Nat Commun. 2022;13(1):3289.
Article CAS PubMed PubMed Central Google Scholar
Anderluzzi G, Lou G, Woods S, Schmidt ST, Gallorini S, Brazzoli M, et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J Control Release. 2022;342:388–99.
Article CAS PubMed Google Scholar
Blakney AK, McKay PF, Hu K, Samnuan K, Jain N, Brown A, et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release. 2021;338:201–10.
Article CAS PubMed PubMed Central Google Scholar
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.
Article CAS PubMed PubMed Central Google Scholar
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94.
Article CAS PubMed PubMed Central Google Scholar
Jung HN, Lee SY, Lee S, Youn H, Im HJ. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–31.
Article CAS PubMed PubMed Central Google Scholar
Riley RS, Kashyap MV, Billingsley MM, White B, Alameh MG, Bose SK, et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv. 2021;7(3):eaba1028.
Article CAS PubMed PubMed Central Google Scholar
Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020;20(3):1578–89.
Article CAS PubMed PubMed Central Google Scholar
Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20(6):359–71.
Article CAS PubMed PubMed Central Google Scholar
Kim J, Jozic A, Lin YX, Eygeris Y, Bloom E, Tan XC, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022;16(9):14792–806.
Article CAS PubMed PubMed Central Google Scholar
Cortez-Jugo C, Qi AS, Rajapaksa A, Friend JR, Yeo LY. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics. 2015;9(5): 052603.
Article PubMed PubMed Central Google Scholar
Mo Y, Cheng MHY, D’Elia A, Doran K, Ding L, Chen J, et al. Light-activated siRNA endosomal release (LASER) by porphyrin lipid nanoparticles. ACS Nano. 2023;17(5):4688–703.
Article CAS PubMed Google Scholar
Massiot J, Rosilio V, Ibrahim N, Yamamoto A, Nicolas V, Konovalov O, et al. Newly synthesized lipid-porphyrin conjugates: evaluation of their self-assembling properties, their miscibility with phospholipids and their photodynamic activity in vitro. Chem-Eur J. 2018;24(72):19179–94.
Article CAS PubMed Google Scholar
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, et al. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip. 2023;23(5):1389–409.
Article CAS PubMed Google Scholar
Rotolo L, Vanover D, Bruno NC, Peck HE, Zurla C, Murray J, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2023;22(3):369–79.
Article CAS PubMed Google Scholar
Sun YZ, Davis E. Nanoplatforms for targeted stimuli-responsive drug delivery: a review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials. 2021;11(3):746.
Article CAS PubMed PubMed Central Google Scholar
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.
Article CAS PubMed Google Scholar
Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, et al. Targeted drug/gene/photodynamic therapy via a stimuli-responsive dendritic-polymer-based nanococktail for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Adv Mater. 2022;34(27): e2201516.
Rudolph C, Ortiz A, Schillinger U, Jauernig J, Plank C, Rosenecker J. Methodological optimization of polyethylenimine (PEI)-based gene delivery to the lungs of mice via aerosol application. J Gene Med. 2005;7(1):59–66.
Article CAS PubMed Google Scholar
McLachlan G, Davidson H, Holder E, Davies LA, Pringle IA, Sumner-Jones SG, et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther. 2011;18(10):996–1005.
Article CAS PubMed Google Scholar
Jiang Z, Cui W, Mager J, Thayumanavan S. Postfunctionalization of noncationic RNA-polymer complexes for RNA delivery. Ind Eng Chem Res. 2019;58(17):6982–91.
Boisguerin P, Konate K, Josse E, Vives E, Deshayes S. Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines. 2021;9(5):583.
Article CAS PubMed PubMed Central Google Scholar
Jia N, Ma J, Gao Y, Hu H, Chen D, Zhao X, et al. HA-modified R8-based bola-amphiphile nanocomplexes for effective improvement of siRNA delivery efficiency. ACS Biomater Sci Eng. 2020;6(4):2084–93.
Article CAS PubMed Google Scholar
Wang H, Liu N, Yang F, Hu N, Wang M, Cui M, et al. Bioengineered protein nanocage by small heat shock proteins delivering mTERT siRNA for enhanced colorectal cancer suppression. ACS Appl Bio Mater. 2022;5(3):1330–40.
Article CAS PubMed Google Scholar
Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding Y, et al. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 2019;13(11):12357–71.
Article CAS PubMed Google Scholar
Zhang R, Tang L, Zhao B, Tian Y, Zhou B, Mu Y, et al. A peptide-based small RNA delivery system to suppress tumor growth by remodeling the tumor microenvironment. Mol Pharm. 2021;18(3):1431–43.
Comments (0)