Guillermo Bracamonte, A. (2022). Gold nanoparticles chemical surface modifications as versatile nanoplatform strategy for fundamental research towards nanotechnology and further applications. Nanoscience and Nanotechnology: Open Access, 1, 1004.
Guillermo Bracamonte, A., Chapter 28, Design of new high energy near Field Nanophotonic materials for far Field applications. DOI: https://doi.org/10.1007/978-3-030-94319-6_28. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, Part of the Springer Book series: Engineering Materials, ISBN 9783030943189; ISBN 978–3–030–94319–6 (eBook); DOI : https://doi.org/10.1007/978-3-030-94319-6; Series ISSN 1612–1317, ISSN 1868–1212 (electronic); Springer Nature, Switzerland (2022) 859–920.
Biswas, S., & Torchilin, V. P. (2014). Nanopreparations for organelle-specific delivery in cancer. Advanced Drug Delivery Reviews, 66, 26–41.
Article PubMed CAS Google Scholar
Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., & Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298, 1759–1762.
Article PubMed CAS Google Scholar
Martin Ame, S. A., Serea, A., Shalan, A. G., & Bracamonte,. (2021). Detection of viruses and development of new treatments: Insights into antibody-antigen interactions and multifunctional lab-on-particle for SARS CoV-2. Journal of Nanotechnol Nanomaterials, Scientific Archives (Creative Commons Attribution License), 2(2), 67–75.
Dufour, S., & De Koninck, Y. (2015). Optrodes for combined optogenetics and electrophysiology in live animals. Neurophotonics, 2(3), 031205.
Article PubMed PubMed Central Google Scholar
Rioux, M., Gontero, D., Veglia, A. V., Guillermo Bracamonte, A., & Boudreau, D. (2017). Synthesis of ultraluminiscent gold core–shell nanoparticles as nanoimaging platforms for biosensing applications based on metal enhanced fluorescence. RSC Advances, 7, 10252–10258.
Asselin, J., Legros, P., Grégoire, A., & Boudreau, D. (2016). Correlating metal-enhanced fluorescence and structural properties in Ag@SiO2 core–shell nanoparticles. Plasmonics. https://doi.org/10.1007/s11468-016-0186-5
West, J. L., & Halas, N. J. (2003). Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering, 5, 285–292.
Article PubMed CAS Google Scholar
Gontero, D., Veglia, A. V., Boudreau, D., & Bracamonte, A. G. (2018). Ultraluminescent gold Core@shell nanoparticles applied to individual bacterial detection based on metal-enhanced fluorescence nanoimaging. Journal of Nanophotonics, 12(1), 012505.
Brouard, D., Lessard Viger, M., Bracamonte, A. G., & Boudreau, D. (2011). Label-free biosensing based on multilayer fluorescent nanocomposites and a cationic polymeric transducer. ACS Nano, 5, 1888–1896.
Article PubMed CAS Google Scholar
Lu, L., Duong, V. T., Shalash, A. O., Skwarczynski, M., & Toth, I. (2021). Chemical conjugation strategies for the development of protein-based subunit nanovaccines. Vaccines, 9, 563.
Article PubMed PubMed Central CAS Google Scholar
Valdes-Balbin, Y., Santana-Mederos, D., Quintero, L., Garcia-Rivera, D., & Verez Bencomo, V. (2021). SARS-CoV-2 RBD-tetanus toxoid conjugate vaccine induces a strong neutralizing immunity in preclinical studies. ACS Chemical Biology, 16(7), 1223–1233.
Article PubMed CAS Google Scholar
Gomez, L. R., Palacios, S. M., Tettamanti, C., Daniela Quinteros, A., & Bracamonte, G. (2021). Nano-chemistry and bio-conjugation with perspectives on the design of nano-immune platforms, vaccines and new combinatorial treatments. Journal of Vaccines and Immunology, 7(1), 049–056.
Veglia, A. V., & Bracamonte, A. G. (2018). Metal enhanced fluorescence emission and quenching protection effect with a host-guest nanophotonic-supramolecular structure. Journal of Nanophotonics, Special Section on Nanoscience and Biomaterials in Photonics, 12(3), 033004.
Graf, C., Vossen, D. L. J., Imhof, A., & van Blaaderen, A. (2003). A general method to coat colloidal particles with silica. Langmuir, 19, 6693–6700.
Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. The Analyst, 139, 4855.
Article PubMed CAS Google Scholar
Martinez, S. M., Inda, A., Garcia, A. M., Bermúdez, J. M., Gonzo, E. E., Herrero-Vanrell, R., Luna, J. D., Allemandi, D. A., & Quinteros, D. A. (2022). Development of melatonin-loaded, human-serum-albumin nanoparticles formulations using different methods of preparation for ophthalmic administration. International Journal of Pharmaceutics, 628, 122308.
Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., & Plech, A. (2006). Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B, 110, 15700–15707.
Article PubMed CAS Google Scholar
In den Kirschen, O. W., Hutchinson, W., & Guillermo Bracamonte, A. (2021). Conjugation reactions of hybrid organosilanes for nanoparticles and surface modifications. Journal of Chemical Research of Advance (JCRA), 2(1), 6–15.
Geddeds C. D. (eds) Metal enhanced fluorescence Book, Copyright© 2010 by John Wiley & Sons. Ine. Ali rights reserved, Published by John Wiley & Sons. Ine Hobokcn. New Jersey, Published simultaneously in Canada, ISBN 978–0–470–22838–8 (cloth).
Lessard-Viger, M., Rioux, M., Rainville, L., & Boudreau, D. (2008). FRET enhancement in core shell nanoparticles. Nanolett, 9(8), 3066–30718.
Luchowski, R., Calander, N., Shtoyko, T., Apicella, E., Borejdo, J., Gryczynski, Z., & Gryczynski, I. (2010). Plasmonic platforms of selfassembled silver nanostructures in application to fluorescence. Journal of Nanophotonics, 4(043516), 1–14.
Boudreau, D., Bracamonte, G, 2019 Ultraluminescent sub-wavelength nanoparticles base on metal enhanced fluorescence and enhanced plasmonics, Bitácora digital Journal. Open call, 10º Ed., Faculty of Chem. Sc. (UNC), 6, 10 (2019) 1–32.ISNN: 2344–9144 https://revistas.unc.edu.ar/index.php/Bitacora/issue/view/2180
Grégoire, A., Boudreau, D., et al. (2017). Chapter 28: Metal-Enhanced Fluorescence in Plasmonic Waveguides. In B. Di Bartolo, et al. (Eds.), Nano-Optics: Principles Enabling Basic Research and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht: Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_28
Curry, S. (2002). Beyond expansion: Structural studies on the transport roles of human serum albumin. Vox Sanguinis, 83(Suppl 1), 315–319.
Article PubMed CAS Google Scholar
Weber, C., Coester, C., Kreuter, J., & Langer, K. (2000). Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 194, 91–102.
Article PubMed CAS Google Scholar
Salinas, C., Amé, M., & Bracamonte, A. G. (2020). Tuning silica nanophotonics based on fluorescence resonance energy transfer for targeted non-classical light delivery applications. Journal of Nanophoton, 14(4), 046007.
Aslan, K., Wu, M., Lakowicz, J. R., & Geddes, C. D. (2007). Fluorescent core−shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. Journal of the American Chemical Society, 129(6), 1524–1525.
Article PubMed PubMed Central CAS Google Scholar
Burns, A., Ow, H., & Wiesner, U. (2006). Fluorescent core–shell silica nanoparticles: Towards “Lab on a particle” architectures for nanobiotechnology. Chemical Society Reviews, 35, 1028–1042.
Article PubMed CAS Google Scholar
Asselin, J., Viger, M. L., & Boudreau, D. (2014). Hindawi. Advances in Chemistry, 2014, 1–16.
Jensen, T. R., Duval, M. L., Lance Kelly, K., Lazarides, A. A., Schatz, G. C., & Van Duyne, R. P. (1999). Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. The Journal of Physical Chemistry B, 103, 9846–9853.
Geddes, C. D. (2010). Metal Enhanced Fluorescence. Wiley.
Salinas, C., & Bracamonte, G. (2018). Design of advanced smart ultraluminescent multifunctional nanoplatforms for biophotonics and nanomedicine applications. Frontiers in Drug, Chemistry and Clinical Research, 1(1), 1–8.
Lakowicz, J. R. (2005). Radiative energy engineering 5: Metal enhanced fluorescence and plasmon emission. Analytical Biochemistry, 337, 171–194.
Article PubMed PubMed Central CAS Google Scholar
Zhang, J., Fu, Y., Chowdhury, M. H., & Lakowicz, J. R. (2007). Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Letters, 7(7), 2101–2107.
Article PubMed PubMed Central CAS Google Scholar
Guillermo Bracamonte, A., Brouard, D., Lessard-Viger, M., Boudreau, D., & Veglia, A. V. (2016). Nano-supramolecular complex synthesis: Switch on/off enhanced fluorescence control and molecular release using a simple chemistry reaction. Microchemical Journal, 128, 297–304.
Chen, Y., Munechika, K., & Ginger, D. S. (2007). Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Letters, 7, 690–696.
Article PubMed CAS Google Scholar
Guillermo Bracamonte, A. (2022). Microarrays towards nanoarrays and the future next generation of sequencing methodologies (NGS). Sensing and Bio-Sensing Research, Elsevier, 37, 100503.
Viger, M. L., Live, L. S., Therrien, O. D., & Boudreau, D. (2008). Reduction of self-quenching in fluorescent silica-coated silver nanoparticles. Plasmonics, 3, 33–40.
Veglia, A. V., & Bracamonte, A. G. (2019). β-Cyclodextrin grafted gold nanoparticles with short molecular spacers applied for nanosensors based on plasmonic effects. Microchem Journal, 148, 277–284.
Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J. J., Smith, D. R., & Schultz, S. (2003). Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3(8), 1087–1090.
Gomez Palacios, L. R., Salinas, C., Veglia, A. V., Ame, M. V., & Guillermo Bracamonte, A. (2022). Self-assembly dynamics and effect on synthetic nanobio-optical properties by hybrid monocolored silica nanoparticle labeling of Escherichia coli. Journal of Nanophotonics, 16(3), 036005. https://doi.org/10.1117/1.JNP.16.036005
Comments (0)