Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistic studies in photocatalysis. Angewandte Chemie (International ed. in English), 58, 3730–3747. https://doi.org/10.1002/anie.201809984
Article CAS PubMed Google Scholar
Howe, R. F. (2008). Recent developments in photocatalysis. Developments in Chemical Engineering and Mineral Processing, 6, 55–84. https://doi.org/10.1002/apj.5500060105
Göstl, R., Senf, A., & Hecht, S. (2014). Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution. Chemical Society Reviews, 43, 1982–1996. https://doi.org/10.1039/c3cs60383k
Article CAS PubMed Google Scholar
Tay, N. E. S., Lehnherr, D., & Rovis, T. (2022). Photons or electrons? A critical comparison of electrochemistry and photoredox catalysis for organic synthesis. Chemical Reviews, 122, 2487–2649. https://doi.org/10.1021/acs.chemrev.1c00384
Article CAS PubMed Google Scholar
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische synthese? Angewandte Chemie, 130, 10188–10228. https://doi.org/10.1002/ange.201709766
Marzo, L., Pagire, S. K., Reiser, O., & Konig, B. (2018). Visible-light photocatalysis: does it make a difference in organic synthesis? Angewandte Chemie (International ed. in English), 57, 10034–10072. https://doi.org/10.1002/anie.201709766
Article CAS PubMed Google Scholar
Gao, S., Tang, G., Hua, D., Xiong, R., Han, J., Jiang, S., Zhang, Q., & Huang, C. (2019). Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B, 7, 709–729. https://doi.org/10.1039/c8tb02491j
Article CAS PubMed Google Scholar
Olejniczak, J., Carling, C. J., & Almutairi, A. (2015). Photocontrolled release using one-photon absorption of visible or NIR light. Journal of Controlled Release, 219, 18–30. https://doi.org/10.1016/j.jconrel.2015.09.030
Article CAS PubMed Google Scholar
Wang, D., & Wang, X. (2013). Amphiphilic azo polymers: Molecular engineering, self-assembly and photoresponsive properties. Progress in Polymer Science, 38, 271–301. https://doi.org/10.1016/j.progpolymsci.2012.07.003
Heinze, K. (2017). The quest for mononuclear gold(II) and its potential role in photocatalysis and drug action. Angewandte Chemie (International ed. in English), 56, 16126–16134. https://doi.org/10.1002/anie.201708349
Article CAS PubMed Google Scholar
Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., & Wang, S. (2017). A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310, 537–559. https://doi.org/10.1016/j.cej.2016.06.090
Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565, 343–346. https://doi.org/10.1038/s41586-018-0835-2
Article CAS PubMed PubMed Central Google Scholar
Yeo, H., & Khan, A. (2020). Photoinduced proton-transfer polymerization: a practical synthetic tool for soft lithography applications. Journal of the American Chemical Society, 142, 3479–3488. https://doi.org/10.1021/jacs.9b11958
Article CAS PubMed Google Scholar
Emoto, A., Uchida, E., & Fukuda, T. (2012). Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers, 4, 150–186. https://doi.org/10.3390/polym4010150
Wei, Y. B., Tang, Q., Gong, C. B., & Lam, M. H. (2015). Review of the recent progress in photoresponsive molecularly imprinted polymers containing azobenzene chromophores. Analytica Chimica Acta, 900, 10–20. https://doi.org/10.1016/j.aca.2015.10.022
Article CAS PubMed Google Scholar
Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., Leong, K. F., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10, 103–122. https://doi.org/10.1080/17452759.2015.1097054
Sun, S., Liang, S., Xu, W.-C., Xu, G., & Wu, S. (2019). Photoresponsive polymers with multi-azobenzene groups. Polymer Chemistry, 10, 4389–4401. https://doi.org/10.1039/c9py00793h
Hirschmann, M., Soltwedel, O., Ritzert, P., von Klitzing, R., & Thiele, C. M. (2023). Light-controlled lyotropic liquid crystallinity of polyaspartates exploited as photo-switchable alignment medium. Journal of the American Chemical Society, 145, 3615–3623. https://doi.org/10.1021/jacs.2c12760
Article CAS PubMed Google Scholar
Berkovic, G., Krongauz, V., & Weiss, V. (2000). Spiropyrans and spirooxazines for memories and switches. Chemical Reviews, 100, 1741–1754. https://doi.org/10.1021/cr9800715
Article CAS PubMed Google Scholar
Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chemical Reviews, 114, 12174–12277. https://doi.org/10.1021/cr500249p
Article CAS PubMed Google Scholar
Yokoyama, Y. (2000). Fulgides for memories and switches. Chemical Reviews, 100, 1717–1740. https://doi.org/10.1021/cr980070c
Article CAS PubMed Google Scholar
Feringa, B. L. (2017). The art of building small: from molecular switches to motors (nobel lecture). Angewandte Chemie (International ed. in English), 56, 11060–11078. https://doi.org/10.1002/anie.201702979
Article CAS PubMed Google Scholar
Kottas, G. S., Clarke, L. I., Horinek, D., & Michl, J. (2005). Artificial molecular rotors. Chemical Reviews, 105, 1281–1376. https://doi.org/10.1021/cr0300993
Article CAS PubMed Google Scholar
Filatov, M., Paolino, M., Min, S. K., & Kim, K. S. (2018). Fulgides as light-driven molecular rotary motors: computational design of a prototype compound. Journal of Physical Chemistry Letters, 9, 4995–5001. https://doi.org/10.1021/acs.jpclett.8b02268
Article CAS PubMed Google Scholar
Gauglitz, G., Goes, R., Stooß, W., & Raue, R. (1985). Determination of partial photochemical quantum yields of reversible photoisomerizations of stilbene-1 derivatives. Zeitschrift für Naturforschung A, 40, 317–323. https://doi.org/10.1515/zna-1985-0403
Wriedt, B., & Ziegenbalg, D. (2020). Common pitfalls in chemical actinometry. Journal of Flow Chemistry, 10, 295–306. https://doi.org/10.1007/s41981-019-00072-7
Vetrakova, L., Ladanyi, V., Al Anshori, J., Dvorak, P., Wirz, J., & Heger, D. (2017). The absorption spectrum of cis-azobenzene. Photochemical & Photobiological Sciences, 16, 1749–1756. https://doi.org/10.1039/c7pp00314e
Antonov, L., & Petrov, V. (2002). Quantitative analysis of undefined mixtures - “fishing net” algorithm. Analytical and Bioanalytical Chemistry, 374, 1312–1317. https://doi.org/10.1007/s00216-002-1600-8
Article CAS PubMed Google Scholar
Antonov, L. (1997). Drawbacks of the present standards for processing absorption spectra recorded linearly as a function of wavelength, TrAC. Trends in Analytical Chemistry, 16, 536–543. https://doi.org/10.1016/s0165-9936(97)00064-2
Elbergali, A., Nygren, J., & Kubista, M. (1999). An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 379, 143–158. https://doi.org/10.1016/s0003-2670(98)00640-0
Kriesten, E., Mayer, D., Alsmeyer, F., Minnich, C. B., Greiner, L., & Marquardt, W. (2008). Identification of unknown pure component spectra by indirect hard modeling. Chemometrics and Intelligent Laboratory Systems, 93, 108–119. https://doi.org/10.1016/j.chemolab.2008.05.002
Kriesten, E., Alsmeyer, F., Bardow, A., & Marquardt, W. (2008). Fully automated indirect hard modeling of mixture spectra. Chemometrics and Intelligent Laboratory Systems, 91, 181–193. https://doi.org/10.1016/j.chemolab.2007.11.004
Antonov, L., & Stoyanov, S. (1995). Resolution of overlapping UV-visible absorption bands: Quantitative analysis of tautomeric equilibria. Analytica Chimica Acta, 314, 225–232. https://doi.org/10.1016/0003-2670(95)00281-4
Antonov, L., & Nedeltcheva, D. (2000). Resolution of overlapping UV–Vis absorption bands and quantitative analysis. Chemical Society Reviews, 29, 217–227. https://doi.org/10.1039/a900007k
Antonov, L., & Stoyanov, S. (1993). Analysis of the overlapping bands in UV-Vis absorption spectroscopy. Applied Spectroscopy, 47, 1030–1035.
de Juan, A., & Tauler, R. (2021). Multivariate Curve resolution: 50 years addressing the mixture analysis problem - a review. Analytica Chimica Acta, 1145, 59–78. https://doi.org/10.1016/j.aca.2020.10.051
Comments (0)