Extraction of pure component spectra from ex situ illumination UV/Vis and NMR spectroscopy

Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistic studies in photocatalysis. Angewandte Chemie (International ed. in English), 58, 3730–3747. https://doi.org/10.1002/anie.201809984

Article  CAS  PubMed  Google Scholar 

Howe, R. F. (2008). Recent developments in photocatalysis. Developments in Chemical Engineering and Mineral Processing, 6, 55–84. https://doi.org/10.1002/apj.5500060105

Article  Google Scholar 

Göstl, R., Senf, A., & Hecht, S. (2014). Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution. Chemical Society Reviews, 43, 1982–1996. https://doi.org/10.1039/c3cs60383k

Article  CAS  PubMed  Google Scholar 

Tay, N. E. S., Lehnherr, D., & Rovis, T. (2022). Photons or electrons? A critical comparison of electrochemistry and photoredox catalysis for organic synthesis. Chemical Reviews, 122, 2487–2649. https://doi.org/10.1021/acs.chemrev.1c00384

Article  CAS  PubMed  Google Scholar 

Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische synthese? Angewandte Chemie, 130, 10188–10228. https://doi.org/10.1002/ange.201709766

Article  Google Scholar 

Marzo, L., Pagire, S. K., Reiser, O., & Konig, B. (2018). Visible-light photocatalysis: does it make a difference in organic synthesis? Angewandte Chemie (International ed. in English), 57, 10034–10072. https://doi.org/10.1002/anie.201709766

Article  CAS  PubMed  Google Scholar 

Gao, S., Tang, G., Hua, D., Xiong, R., Han, J., Jiang, S., Zhang, Q., & Huang, C. (2019). Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B, 7, 709–729. https://doi.org/10.1039/c8tb02491j

Article  CAS  PubMed  Google Scholar 

Olejniczak, J., Carling, C. J., & Almutairi, A. (2015). Photocontrolled release using one-photon absorption of visible or NIR light. Journal of Controlled Release, 219, 18–30. https://doi.org/10.1016/j.jconrel.2015.09.030

Article  CAS  PubMed  Google Scholar 

Wang, D., & Wang, X. (2013). Amphiphilic azo polymers: Molecular engineering, self-assembly and photoresponsive properties. Progress in Polymer Science, 38, 271–301. https://doi.org/10.1016/j.progpolymsci.2012.07.003

Article  CAS  Google Scholar 

Heinze, K. (2017). The quest for mononuclear gold(II) and its potential role in photocatalysis and drug action. Angewandte Chemie (International ed. in English), 56, 16126–16134. https://doi.org/10.1002/anie.201708349

Article  CAS  PubMed  Google Scholar 

Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., & Wang, S. (2017). A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310, 537–559. https://doi.org/10.1016/j.cej.2016.06.090

Article  CAS  Google Scholar 

Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565, 343–346. https://doi.org/10.1038/s41586-018-0835-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeo, H., & Khan, A. (2020). Photoinduced proton-transfer polymerization: a practical synthetic tool for soft lithography applications. Journal of the American Chemical Society, 142, 3479–3488. https://doi.org/10.1021/jacs.9b11958

Article  CAS  PubMed  Google Scholar 

Emoto, A., Uchida, E., & Fukuda, T. (2012). Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers, 4, 150–186. https://doi.org/10.3390/polym4010150

Article  CAS  Google Scholar 

Wei, Y. B., Tang, Q., Gong, C. B., & Lam, M. H. (2015). Review of the recent progress in photoresponsive molecularly imprinted polymers containing azobenzene chromophores. Analytica Chimica Acta, 900, 10–20. https://doi.org/10.1016/j.aca.2015.10.022

Article  CAS  PubMed  Google Scholar 

Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., Leong, K. F., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10, 103–122. https://doi.org/10.1080/17452759.2015.1097054

Article  Google Scholar 

Sun, S., Liang, S., Xu, W.-C., Xu, G., & Wu, S. (2019). Photoresponsive polymers with multi-azobenzene groups. Polymer Chemistry, 10, 4389–4401. https://doi.org/10.1039/c9py00793h

Article  CAS  Google Scholar 

Hirschmann, M., Soltwedel, O., Ritzert, P., von Klitzing, R., & Thiele, C. M. (2023). Light-controlled lyotropic liquid crystallinity of polyaspartates exploited as photo-switchable alignment medium. Journal of the American Chemical Society, 145, 3615–3623. https://doi.org/10.1021/jacs.2c12760

Article  CAS  PubMed  Google Scholar 

Berkovic, G., Krongauz, V., & Weiss, V. (2000). Spiropyrans and spirooxazines for memories and switches. Chemical Reviews, 100, 1741–1754. https://doi.org/10.1021/cr9800715

Article  CAS  PubMed  Google Scholar 

Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chemical Reviews, 114, 12174–12277. https://doi.org/10.1021/cr500249p

Article  CAS  PubMed  Google Scholar 

Yokoyama, Y. (2000). Fulgides for memories and switches. Chemical Reviews, 100, 1717–1740. https://doi.org/10.1021/cr980070c

Article  CAS  PubMed  Google Scholar 

Feringa, B. L. (2017). The art of building small: from molecular switches to motors (nobel lecture). Angewandte Chemie (International ed. in English), 56, 11060–11078. https://doi.org/10.1002/anie.201702979

Article  CAS  PubMed  Google Scholar 

Kottas, G. S., Clarke, L. I., Horinek, D., & Michl, J. (2005). Artificial molecular rotors. Chemical Reviews, 105, 1281–1376. https://doi.org/10.1021/cr0300993

Article  CAS  PubMed  Google Scholar 

Filatov, M., Paolino, M., Min, S. K., & Kim, K. S. (2018). Fulgides as light-driven molecular rotary motors: computational design of a prototype compound. Journal of Physical Chemistry Letters, 9, 4995–5001. https://doi.org/10.1021/acs.jpclett.8b02268

Article  CAS  PubMed  Google Scholar 

Gauglitz, G., Goes, R., Stooß, W., & Raue, R. (1985). Determination of partial photochemical quantum yields of reversible photoisomerizations of stilbene-1 derivatives. Zeitschrift für Naturforschung A, 40, 317–323. https://doi.org/10.1515/zna-1985-0403

Article  Google Scholar 

Wriedt, B., & Ziegenbalg, D. (2020). Common pitfalls in chemical actinometry. Journal of Flow Chemistry, 10, 295–306. https://doi.org/10.1007/s41981-019-00072-7

Article  Google Scholar 

Vetrakova, L., Ladanyi, V., Al Anshori, J., Dvorak, P., Wirz, J., & Heger, D. (2017). The absorption spectrum of cis-azobenzene. Photochemical & Photobiological Sciences, 16, 1749–1756. https://doi.org/10.1039/c7pp00314e

Article  CAS  Google Scholar 

Antonov, L., & Petrov, V. (2002). Quantitative analysis of undefined mixtures - “fishing net” algorithm. Analytical and Bioanalytical Chemistry, 374, 1312–1317. https://doi.org/10.1007/s00216-002-1600-8

Article  CAS  PubMed  Google Scholar 

Antonov, L. (1997). Drawbacks of the present standards for processing absorption spectra recorded linearly as a function of wavelength, TrAC. Trends in Analytical Chemistry, 16, 536–543. https://doi.org/10.1016/s0165-9936(97)00064-2

Article  CAS  Google Scholar 

Elbergali, A., Nygren, J., & Kubista, M. (1999). An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 379, 143–158. https://doi.org/10.1016/s0003-2670(98)00640-0

Article  CAS  Google Scholar 

Kriesten, E., Mayer, D., Alsmeyer, F., Minnich, C. B., Greiner, L., & Marquardt, W. (2008). Identification of unknown pure component spectra by indirect hard modeling. Chemometrics and Intelligent Laboratory Systems, 93, 108–119. https://doi.org/10.1016/j.chemolab.2008.05.002

Article  CAS  Google Scholar 

Kriesten, E., Alsmeyer, F., Bardow, A., & Marquardt, W. (2008). Fully automated indirect hard modeling of mixture spectra. Chemometrics and Intelligent Laboratory Systems, 91, 181–193. https://doi.org/10.1016/j.chemolab.2007.11.004

Article  CAS  Google Scholar 

Antonov, L., & Stoyanov, S. (1995). Resolution of overlapping UV-visible absorption bands: Quantitative analysis of tautomeric equilibria. Analytica Chimica Acta, 314, 225–232. https://doi.org/10.1016/0003-2670(95)00281-4

Article  CAS  Google Scholar 

Antonov, L., & Nedeltcheva, D. (2000). Resolution of overlapping UV–Vis absorption bands and quantitative analysis. Chemical Society Reviews, 29, 217–227. https://doi.org/10.1039/a900007k

Article  CAS  Google Scholar 

Antonov, L., & Stoyanov, S. (1993). Analysis of the overlapping bands in UV-Vis absorption spectroscopy. Applied Spectroscopy, 47, 1030–1035.

Article  CAS  Google Scholar 

de Juan, A., & Tauler, R. (2021). Multivariate Curve resolution: 50 years addressing the mixture analysis problem - a review. Analytica Chimica Acta, 1145, 59–78. https://doi.org/10.1016/j.aca.2020.10.051

Article  CAS  PubMed

Comments (0)

No login
gif