Protein Hydrogels: A Concise Review of Properties and Applications

Abaee A, Mohammadian M, Jafari SM (2017) Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Technol 70:69–81. https://doi.org/10.1016/j.tifs.2017.10.011

Article  CAS  Google Scholar 

Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A (2019) Gelatin polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioeng Transl Med 4(1):96–11. https://doi.org/10.1002/btm2.10124

Article  CAS  PubMed  Google Scholar 

Agyare KK, Damodaran S (2010) pH-stability and thermal properties of microbial transglutaminase-treated whey protein isolate. J Agric Food Chem 58(3):1946–1953. https://doi.org/10.1021/jf903530d

Article  CAS  PubMed  Google Scholar 

Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

Article  CAS  PubMed  Google Scholar 

Aigner T, Stöve J (2003) Collagens—major component of the physiological cartilage matrix, a major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593. https://doi.org/10.1016/j.addr.2003.08.009

Article  CAS  PubMed  Google Scholar 

Alavi F, Emam-Djomeh Z, Yarmand MS, Salami M, Momen S, Moosavi-Movahedi AA (2018) Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocoll 85:267–280. https://doi.org/10.1016/j.foodhyd.2018.07.012

Article  CAS  Google Scholar 

Ali A, Ahmed S (2018) Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J Agric Food Chem 66(27):6940–6967. https://doi.org/10.1021/acs.jafc.8b01052

Article  CAS  PubMed  Google Scholar 

Alting AC, de Jongh HH, Visschers RW, Simons JWF (2002) Physical and chemical interactions in cold gelation of food proteins. J Agric Food Chem 50(16):4682–4689. https://doi.org/10.1021/jf011657m

Article  CAS  PubMed  Google Scholar 

Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B: Reviews 20(6):683–696. https://doi.org/10.1089/ten.teb.2014.0086

Article  CAS  Google Scholar 

Apichartsrangkoon A (2003) Effects of high pressure on rheological properties of soy protein gels. Food Chem 80(1):55–60. https://doi.org/10.1016/S0308-8146(02)00235-2

Article  CAS  Google Scholar 

Ashfaq A, Jahan K, Islam RU, Younis K (2022) Protein-based functional colloids and their potential applications in food: a review. LWT 154:112667. https://doi.org/10.1016/j.lwt.2021.112667

Article  CAS  Google Scholar 

Bae KH, Kurisawa M (2016) Emerging hydrogel designs for controlled protein delivery. Biomater Sci 4(8):1184–1192. https://doi.org/10.1039/C6BM00330C

Article  CAS  PubMed  Google Scholar 

Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26(32):6335–6342. https://doi.org/10.1016/j.biomaterials.2005.04.012

Article  CAS  PubMed  Google Scholar 

Biranje S, Madiwale P, Adivarekar RV (2019) Porous electrospun Casein/PVA nanofibrous mat for its potential application as wound dressing material. J Porous Mater 26(1):29–40. https://doi.org/10.1007/s10934-018-0602-7

Article  Google Scholar 

Biranje SS, Sun J, Cheng L, Cheng Y, Shi Y, Yu S, …, Liu J (2022) Development of cellulose nanofibril/casein-based 3D composite hemostasis scaffold for potential wound-healing application. ACS Appl Mater Interfaces 14(3):3792–3808. https://doi.org/10.1021/acsami.1c21039

Article  CAS  PubMed  Google Scholar 

Brodkorb A, Croguennec T, Bouhallab S, Kehoe JJ (2016) Heat-induced denaturation, aggregation and gelation of whey proteins. Advanced dairy Chemistry. Springer, New York, NY, pp 155–178. https://doi.org/10.1007/978-1-4939-2800-2_6.

Chapter  Google Scholar 

Cai Y, Shen H, Zhan J, Lin M, Dai L, Ren C et al (2017) Supramolecular trojan horse for nuclear delivery of dual anticancer drugs. J Am Chem Soc 139:2876–2879. https://doi.org/10.1021/jacs.6b12322

Article  CAS  PubMed  Google Scholar 

Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polymer J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

Article  CAS  Google Scholar 

Cao Y, Mezzenga R (2020) Design principles of food gels. Nat Food 1(2):106–118. https://doi.org/10.1038/s43016-019-0009-x

Article  PubMed  Google Scholar 

Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F (2019) Overview of natural hydrogels for regenerative medicine applications. J Mater Sci: Mater Med 30(10):1–10. https://doi.org/10.1007/s10856-019-6318-7

Article  CAS  Google Scholar 

Cen L, Liu WEI, Cui LEI, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492–496. https://doi.org/10.1203/PDR.0b013e31816c5bc3

Article  CAS  PubMed  Google Scholar 

Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Controlled Release 161(2):680–692. https://doi.org/10.1016/j.jconrel.2012.03.002

Article  CAS  Google Scholar 

Chen Q, Zhu L, Chen H, Yan H, Huang L, Yang J, Zheng J (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25(10):1598–1607. https://doi.org/10.1002/adfm.201404357

Article  CAS  Google Scholar 

Chen Z, Du T, Tang X, Liu C, Li R, Xu C, …, Wu J (2016) Comparison of the properties of collagen–chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking. J Biomater Sci Polym Ed 27(10):937–953. https://doi.org/10.1080/09205063.2016.1169478

Article  CAS  PubMed  Google Scholar 

Chirani N, Yahia LH, Gritsch L, Motta FL, Chirani S, Farè S (2015) History and applications of hydrogels. J Biomedical Sci 4(02):1–23

Google Scholar 

Chung C, Degner B, Decker EA, McClements DJ (2013) Oil-filled hydrogel particles for reduced-fat food applications: fabrication, characterization, and properties. Innov Food Sci Emerg Technol 20:324–334. https://doi.org/10.1016/j.ifset.2013.08.006

Article  CAS  Google Scholar 

da Silva MV, Delgado JMPQ, Gonçalves MP (2010) Impact of Mg2 + and tara gum concentrations on flow and textural properties of WPI solutions and cold-set gels. Int J Food Prop 13(5):972–982. https://doi.org/10.1080/10942910902927128

Article  CAS  Google Scholar 

Damiri F, Bachra Y, Bounacir C, Laaraibi A, Berrada M (2020) Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release. J Chem. https://doi.org/10.1155/2020/8747639

Article  Google Scholar 

Damiri F, Kommineni N, Ebhodaghe SO, Bulusu R, Jyothi VGS, Sayed AA, …, Berrada M (2022b) Microneedle-based natural polysaccharide for drug delivery systems (DDS): progress and challenges. Pharmaceuticals 15(2):190

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. RSC Adv 3(24):9117–9149. https://doi.org/10.1039/C3RA40234G

Article  CAS  Google Scholar 

Davachi SM, Haramshahi SMA, Akhavirad SA, Bahrami N, Hassanzadeh S, Ezzatpour S, …, Bagher Z (2022) Development of chitosan/hyaluronic acid hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. Mater Today Commun 30:103230. https://doi.org/10.1016/j.mtcomm.2022.103230

Article  CAS  Google Scholar 

Duerasch A, Wissel J, Henle T (2018) Reassembling of alkali-treated casein micelles by microbial transglutaminase. J Agr Food Chem 66(44):11748–11756

de Kruif CK, Anema SG, Zhu C, Havea P, Coker C (2015) Water holding capacity and swelling of casein hydrogels. Food Hydrocolloids 44:372–379. https://doi.org/10.1016/j.foodhyd.2014.10.007

Article  CAS  Google Scholar 

Deeth H, Bansal N (2019) Whey proteins: an overview. Whey Proteins. https://doi.org/10.1016/B978-0-12-812124-5.00001-1

Article  Google Scholar 

Devezeaux de Lavergne M, Strijbosch VM, Van den Broek AW, Van de Velde F, Stieger M (2016) Uncoupling the impact of fracture properties and composition on sensory perception of emulsion-filled gels. J Texture Stud 47(2):92–111. https://doi.org/10.1111/jtxs.12164

Article  Google Scholar 

Di Martino A, Khan YA, Durpekova S, Sedlarik V, Elich O, Cechmankova J (2021) Ecofriendly renewable hydrogels based on whey protein and for slow release of fertilizers and soil conditioning. J Clean Prod 285:124848

Article  Google Scholar 

Dickinson E (2006) Structure formation in casein-based gels, foams, and emulsions. Colloids Surf A: Physicochem Eng Aspects 288(1–3):3–11. https://doi.org/10.1016/j.colsurfa.2006.01.012

Article  CAS  Google Scholar 

Ding X, Yao P (2013) Soy protein/soy polysaccharide complex nanogels: folic acid loading, protection, and controlled delivery. Langmuir 29(27):8636–8644. https://doi.org/10.1021/la401664y

Article  CAS  PubMed  Google Scholar 

Doillon CJ, Drouin R, Côte MF, Dallaire N, Pageau JF, Laroche G (1997) Chemical inactivators as sterilization agents for bovine collagen materials. J Biomed Mater Res: Off J Soc Biomater Jpn Soc Biomater 37(2):212–221.

Comments (0)

No login
gif