Awuchi CG, Chukwu CN, Iyiola AO, Noreen S, Morya S, Adeleye AO, Twinomuhwezi H, Leicht K, Mitaki NB, Okpala COR (2022) Bioactive compounds and therapeutics from fish: revisiting their suitability in functional foods to enhance human wellbeing. Biomed Res Int 2022:3661866. https://doi.org/10.1155/2022/3661866
Article CAS PubMed PubMed Central Google Scholar
Badiu DL, Luque R, Dumitrescu E, Craciun A, Dinca D (2010) Amino acids from Mytilus galloprovincialis (L.) and Rapana venosa molluscs accelerate skin wounds healing via enhancement of dermal and epidermal neoformation. Protein J 29(2):81–92. https://doi.org/10.1007/s10930-009-9225-9
Article CAS PubMed Google Scholar
Bloch-Shilderman E, Jiang H, Abu-Raya S, Linial M, Lazarovici P (2001) Involvement of extracellular signal-regulated kinase (ERK) in pardaxin-induced dopamine release from PC12 cells. J Pharmacol Exp Ther 296(3):704–711
Bloch-Shilderman E, Abu-Raya S, Trembovler V, Boschwitz H, Gruzman AML, Lazarovici P (2002) Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC-12 cells. J Pharmacol Exp Ther 301(3):953–962. https://doi.org/10.1124/jpet.301.3.953
Article CAS PubMed Google Scholar
Chakraborty S, Rahman T (2012) The difficulties in cancer treatment. Ecancermedicalscience 6:ed16. https://doi.org/10.3332/ecancer.2012.ed16
Article PubMed PubMed Central Google Scholar
Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, Kuo HM, Wen ZH (2021) Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants (basel) 10:12. https://doi.org/10.3390/antiox10121883
Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J (2022) Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 62(5):1187–1203. https://doi.org/10.1080/10408398.2020.1836606
Article CAS PubMed Google Scholar
Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57(3):678–696. https://doi.org/10.3892/ijo.2020.5099
Article CAS PubMed PubMed Central Google Scholar
Cooper GM (2000) The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Sunderland
Dalgleish AG (2014) Vaccines versus immunotherapy: overview of approaches in deciding between options. Hum Vaccin Immunother 10(11):3369–3374. https://doi.org/10.4161/21645515.2014.980707
Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7(6):487–499. https://doi.org/10.2174/138920306779025611
Article CAS PubMed Google Scholar
Edwards V, Benkendorff K, Young F (2012) Marine compounds selectively induce apoptosis in female reproductive cancer cells but not in primary-derived human reproductive granulosa cells. Mar Drugs 10(1):64–83. https://doi.org/10.3390/md10010064
Article CAS PubMed PubMed Central Google Scholar
Esmaeelian B, Abbott CA, Le Leu RK, Benkendorff K (2013a) 6-bromoisatin found in muricid mollusc extracts inhibits colon cancer cell proliferation and induces apoptosis, preventing early stage tumor formation in a colorectal cancer rodent model. Mar Drugs 12(1):17–35. https://doi.org/10.3390/md12010017
Article CAS PubMed PubMed Central Google Scholar
Esmaeelian B, Benkendorff K, Johnston MR, Abbott CA (2013b) Purified brominated indole derivatives from Dicathais orbita induce apoptosis and cell cycle arrest in colorectal cancer cell lines. Mar Drugs 11(10):3802–3822. https://doi.org/10.3390/md11103802
Article CAS PubMed PubMed Central Google Scholar
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer. https://doi.org/10.1002/ijc.33588
Ganesan P, Noda K, Manabe Y, Ohkubo T, Tanaka Y, Maoka T, Sugawara T, Hirata T (2011) Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochim Biophys Acta 1810(5):497–503. https://doi.org/10.1016/j.bbagen.2011.02.008
Article CAS PubMed Google Scholar
Ghasemi A, Ghavimi R, Momenzadeh N, Hajian S, Mohammadi M (2021) Characterization of antitumor activity of a synthetic moronecidin-like peptide computationally predicted from the tiger tail seahorse hippocampus comes in tumor-bearing mice. Int J Pept Res Ther 27:2391–2401. https://doi.org/10.1007/s10989-021-10260-6
Godlewska K, Dmytryk A, Tuhy Ł, Chojnacka K (2017) Algae as source of food and nutraceuticals. In: Tripathi BN, Kumar D (eds) Prospects and Challenges in Algal Biotechnology. Springer Singapore, Singapore
Guo CH, Hsia S, Chung CH, Lin YC, Shih MY, Chen PC, Hsu GW, Fan CT, Peng CL (2021) Combination of fish oil and selenium enhances anticancer efficacy and targets multiple signaling pathways in Anti-VEGF agent treated-TNBC tumor-bearing mice. Mar Drugs 19:4. https://doi.org/10.3390/md19040193
Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83(2):1004–1013. https://doi.org/10.1016/S0006-3495(02)75226-0
Article CAS PubMed PubMed Central Google Scholar
Han Y, Cui Z, Li YH, Hsu WH, Lee BH (2015) In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs 14(1):2. https://doi.org/10.3390/md14010002
Article CAS PubMed PubMed Central Google Scholar
Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779. https://doi.org/10.3389/fmicb.2020.582779
Article PubMed PubMed Central Google Scholar
Huang TC, Chen JY (2013) Proteomic analysis reveals that pardaxin triggers apoptotic signaling pathways in human cervical carcinoma HeLa cells: cross talk among the UPR, c-Jun and ROS. Carcinogenesis 34(8):1833–1842. https://doi.org/10.1093/carcin/bgt130
Article CAS PubMed Google Scholar
Huang TC, Lee JF, Chen JY (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9(10):1995–2009. https://doi.org/10.3390/md9101995
Article CAS PubMed PubMed Central Google Scholar
Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY (2013) A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials 34(38):10151–10159. https://doi.org/10.1016/j.biomaterials.2013.09.041
Article CAS PubMed Google Scholar
Huang Y, Feng Q, Yan Q, Hao X, Chen Y (2015) Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem 15(1):73–81. https://doi.org/10.2174/1389557514666141107120954
Article CAS PubMed Google Scholar
Jafari M, Mehrnejad F, Aghdami R, Chaparzadeh N, Kashani ZRM, Doustdar F (2017a) Identification of the crucial residues in the early insertion of pardaxin into different phospholipid bilayers. J Chem Inf Model 57(4):929–941. https://doi.org/10.1021/acs.jcim.6b00693
Article CAS PubMed Google Scholar
Jafari M, Mehrnejad F, Doustdar F (2017b) Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers. PLoS ONE 12(11):e0187216. https://doi.org/10.1371/journal.pone.0187216
Article CAS PubMed PubMed Central Google Scholar
Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S (2018) Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg 5(1):38. https://doi.org/10.1186/s40580-018-0170-1
Article CAS PubMed PubMed Central Google Scholar
Johnson SB, Park HS, Gross CP, Yu JB (2018) Use of alternative medicine for cancer and its impact on survival. J Natl Cancer Inst 110:1. https://doi.org/10.1093/jnci/djx145
Kelman D, Posner EK, McDermid KJ, Tabandera NK, Wright PR, Wright AD (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10(2):403–416. https://doi.org/10.3390/md10020403
Article CAS PubMed PubMed Central Google Scholar
Khositanon P, Inpratom D, Somwang T, Iawsipo P, Roytrakul S and Choksawangkarn W (2018). Antibacterial and anticancer activities of protein hydrolysate from fish sauce byproduct. The 6thInternational Conference on Biochemistry and Molecular Biology (BMB2018), Rayong Resort, Rayong, Thailand.
Kim HS, Kim SY, Fernando IPS, Sanjeewa KKA, Wang L, Lee SH, Ko SC, Kang MC, Jayawardena TU, Jeon YJ (2019) Free radical scavenging activity of the peptide from the alcalase hydrolysate of the edible aquacultural seahorse (Hippocampus abdominalis). J Food Biochem 43(7):e12833. https://doi.org/10.1111/jfbc.12833
Article CAS PubMed Google Scholar
Kumaravel K, Ravichandran S, Balasubramanian T, Siva Subramanian K, Ahmad Bhat B (2010) Antimicrobial effect of five seahorse species from Indian coast. Br J Pharmacol Toxicol 1(2):62–66
Kurt O, Ozdal-Kurt F, Tuglu MI, Akcora CM (2014) The cytotoxic, neurotoxic, apoptotic and antiproliferative activities of extracts of some marine algae on the MCF-7 cell line. Biotech Histochem 89(8):568–576.
Comments (0)