The Therapeutic Anticancer Potential of Marine-Derived Bioactive Peptides: A Highlight on Pardaxin

Awuchi CG, Chukwu CN, Iyiola AO, Noreen S, Morya S, Adeleye AO, Twinomuhwezi H, Leicht K, Mitaki NB, Okpala COR (2022) Bioactive compounds and therapeutics from fish: revisiting their suitability in functional foods to enhance human wellbeing. Biomed Res Int 2022:3661866. https://doi.org/10.1155/2022/3661866

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badiu DL, Luque R, Dumitrescu E, Craciun A, Dinca D (2010) Amino acids from Mytilus galloprovincialis (L.) and Rapana venosa molluscs accelerate skin wounds healing via enhancement of dermal and epidermal neoformation. Protein J 29(2):81–92. https://doi.org/10.1007/s10930-009-9225-9

Article  CAS  PubMed  Google Scholar 

Bloch-Shilderman E, Jiang H, Abu-Raya S, Linial M, Lazarovici P (2001) Involvement of extracellular signal-regulated kinase (ERK) in pardaxin-induced dopamine release from PC12 cells. J Pharmacol Exp Ther 296(3):704–711

CAS  PubMed  Google Scholar 

Bloch-Shilderman E, Abu-Raya S, Trembovler V, Boschwitz H, Gruzman AML, Lazarovici P (2002) Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC-12 cells. J Pharmacol Exp Ther 301(3):953–962. https://doi.org/10.1124/jpet.301.3.953

Article  CAS  PubMed  Google Scholar 

Chakraborty S, Rahman T (2012) The difficulties in cancer treatment. Ecancermedicalscience 6:ed16. https://doi.org/10.3332/ecancer.2012.ed16

Article  PubMed  PubMed Central  Google Scholar 

Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, Kuo HM, Wen ZH (2021) Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants (basel) 10:12. https://doi.org/10.3390/antiox10121883

Article  CAS  Google Scholar 

Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J (2022) Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 62(5):1187–1203. https://doi.org/10.1080/10408398.2020.1836606

Article  CAS  PubMed  Google Scholar 

Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57(3):678–696. https://doi.org/10.3892/ijo.2020.5099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper GM (2000) The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Sunderland

Google Scholar 

Dalgleish AG (2014) Vaccines versus immunotherapy: overview of approaches in deciding between options. Hum Vaccin Immunother 10(11):3369–3374. https://doi.org/10.4161/21645515.2014.980707

Article  PubMed  Google Scholar 

Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7(6):487–499. https://doi.org/10.2174/138920306779025611

Article  CAS  PubMed  Google Scholar 

Edwards V, Benkendorff K, Young F (2012) Marine compounds selectively induce apoptosis in female reproductive cancer cells but not in primary-derived human reproductive granulosa cells. Mar Drugs 10(1):64–83. https://doi.org/10.3390/md10010064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esmaeelian B, Abbott CA, Le Leu RK, Benkendorff K (2013a) 6-bromoisatin found in muricid mollusc extracts inhibits colon cancer cell proliferation and induces apoptosis, preventing early stage tumor formation in a colorectal cancer rodent model. Mar Drugs 12(1):17–35. https://doi.org/10.3390/md12010017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esmaeelian B, Benkendorff K, Johnston MR, Abbott CA (2013b) Purified brominated indole derivatives from Dicathais orbita induce apoptosis and cell cycle arrest in colorectal cancer cell lines. Mar Drugs 11(10):3802–3822. https://doi.org/10.3390/md11103802

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer. https://doi.org/10.1002/ijc.33588

Article  PubMed  Google Scholar 

Ganesan P, Noda K, Manabe Y, Ohkubo T, Tanaka Y, Maoka T, Sugawara T, Hirata T (2011) Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochim Biophys Acta 1810(5):497–503. https://doi.org/10.1016/j.bbagen.2011.02.008

Article  CAS  PubMed  Google Scholar 

Ghasemi A, Ghavimi R, Momenzadeh N, Hajian S, Mohammadi M (2021) Characterization of antitumor activity of a synthetic moronecidin-like peptide computationally predicted from the tiger tail seahorse hippocampus comes in tumor-bearing mice. Int J Pept Res Ther 27:2391–2401. https://doi.org/10.1007/s10989-021-10260-6

Article  CAS  Google Scholar 

Godlewska K, Dmytryk A, Tuhy Ł, Chojnacka K (2017) Algae as source of food and nutraceuticals. In: Tripathi BN, Kumar D (eds) Prospects and Challenges in Algal Biotechnology. Springer Singapore, Singapore

Google Scholar 

Guo CH, Hsia S, Chung CH, Lin YC, Shih MY, Chen PC, Hsu GW, Fan CT, Peng CL (2021) Combination of fish oil and selenium enhances anticancer efficacy and targets multiple signaling pathways in Anti-VEGF agent treated-TNBC tumor-bearing mice. Mar Drugs 19:4. https://doi.org/10.3390/md19040193

Article  CAS  Google Scholar 

Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83(2):1004–1013. https://doi.org/10.1016/S0006-3495(02)75226-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Y, Cui Z, Li YH, Hsu WH, Lee BH (2015) In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs 14(1):2. https://doi.org/10.3390/md14010002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779. https://doi.org/10.3389/fmicb.2020.582779

Article  PubMed  PubMed Central  Google Scholar 

Huang TC, Chen JY (2013) Proteomic analysis reveals that pardaxin triggers apoptotic signaling pathways in human cervical carcinoma HeLa cells: cross talk among the UPR, c-Jun and ROS. Carcinogenesis 34(8):1833–1842. https://doi.org/10.1093/carcin/bgt130

Article  CAS  PubMed  Google Scholar 

Huang TC, Lee JF, Chen JY (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9(10):1995–2009. https://doi.org/10.3390/md9101995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY (2013) A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials 34(38):10151–10159. https://doi.org/10.1016/j.biomaterials.2013.09.041

Article  CAS  PubMed  Google Scholar 

Huang Y, Feng Q, Yan Q, Hao X, Chen Y (2015) Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem 15(1):73–81. https://doi.org/10.2174/1389557514666141107120954

Article  CAS  PubMed  Google Scholar 

Jafari M, Mehrnejad F, Aghdami R, Chaparzadeh N, Kashani ZRM, Doustdar F (2017a) Identification of the crucial residues in the early insertion of pardaxin into different phospholipid bilayers. J Chem Inf Model 57(4):929–941. https://doi.org/10.1021/acs.jcim.6b00693

Article  CAS  PubMed  Google Scholar 

Jafari M, Mehrnejad F, Doustdar F (2017b) Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers. PLoS ONE 12(11):e0187216. https://doi.org/10.1371/journal.pone.0187216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S (2018) Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg 5(1):38. https://doi.org/10.1186/s40580-018-0170-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson SB, Park HS, Gross CP, Yu JB (2018) Use of alternative medicine for cancer and its impact on survival. J Natl Cancer Inst 110:1. https://doi.org/10.1093/jnci/djx145

Article  Google Scholar 

Kelman D, Posner EK, McDermid KJ, Tabandera NK, Wright PR, Wright AD (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10(2):403–416. https://doi.org/10.3390/md10020403

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khositanon P, Inpratom D, Somwang T, Iawsipo P, Roytrakul S and Choksawangkarn W (2018). Antibacterial and anticancer activities of protein hydrolysate from fish sauce byproduct. The 6thInternational Conference on Biochemistry and Molecular Biology (BMB2018), Rayong Resort, Rayong, Thailand.

Kim HS, Kim SY, Fernando IPS, Sanjeewa KKA, Wang L, Lee SH, Ko SC, Kang MC, Jayawardena TU, Jeon YJ (2019) Free radical scavenging activity of the peptide from the alcalase hydrolysate of the edible aquacultural seahorse (Hippocampus abdominalis). J Food Biochem 43(7):e12833. https://doi.org/10.1111/jfbc.12833

Article  CAS  PubMed  Google Scholar 

Kumaravel K, Ravichandran S, Balasubramanian T, Siva Subramanian K, Ahmad Bhat B (2010) Antimicrobial effect of five seahorse species from Indian coast. Br J Pharmacol Toxicol 1(2):62–66

Google Scholar 

Kurt O, Ozdal-Kurt F, Tuglu MI, Akcora CM (2014) The cytotoxic, neurotoxic, apoptotic and antiproliferative activities of extracts of some marine algae on the MCF-7 cell line. Biotech Histochem 89(8):568–576.

Comments (0)

No login
gif