Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993;73:197–227. https://doi.org/10.1152/physrev.1993.73.1.197.
Article CAS PubMed Google Scholar
Baruscotti M, Barbuti A, Bucchi A. The cardiac pacemaker current. J Mol Cell Cardiol. 2010;48:55–64. https://doi.org/10.1016/j.yjmcc.2009.06.019.
Article CAS PubMed Google Scholar
Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82. https://doi.org/10.1152/physrev.00018.2007.
Article CAS PubMed Google Scholar
Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73. https://doi.org/10.1161/CIRCRESAHA.109.206078.
Article CAS PubMed PubMed Central Google Scholar
Vinogradova TM, Zhou YY, Maltsev V, Lyashkov A, Stern M, Lakatta EG. Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94:802–9. https://doi.org/10.1161/01.Res.0000122045.55331.0f.
Article CAS PubMed Google Scholar
Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol. 2009;47:157–70. https://doi.org/10.1016/j.yjmcc.2009.03.022.
Article CAS PubMed PubMed Central Google Scholar
Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res. 2004;62:489–99. https://doi.org/10.1016/j.cardiores.2004.01.030.
Article CAS PubMed Google Scholar
Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de VC, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, et al. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res. 2006;98:1555–63. https://doi.org/10.1161/01.RES.0000227571.84189.65.
Article CAS PubMed Google Scholar
Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 2007;115:1830–8. https://doi.org/10.1161/circulationaha.106.637819.
Article CAS PubMed Google Scholar
Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007;304:286–96. https://doi.org/10.1016/j.ydbio.2006.12.048.
Article CAS PubMed Google Scholar
Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X, Muller JC, Schrepfer S, Evans SM, Carrier L, Eschenhagen T. Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart. Circ Res. 2012;110:1303–10. https://doi.org/10.1161/CIRCRESAHA.111.259630.
Article CAS PubMed PubMed Central Google Scholar
Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007;21:1098–112. https://doi.org/10.1101/gad.416007.
Article CAS PubMed PubMed Central Google Scholar
Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de VC, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 2009;104:388–97. https://doi.org/10.1161/circresaha.108.187062.
Article CAS PubMed Google Scholar
Liang X, Zhang Q, Cattaneo P, Zhuang S, Gong X, Spann NJ, Jiang C, Cao X, Zhao X, Zhang X, et al. Transcription factor ISL1 is essential for pacemaker development and function. J Clin Invest. 2015;125:3256–68. https://doi.org/10.1172/jci68257.
Article PubMed PubMed Central Google Scholar
Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567–73. https://doi.org/10.1172/jci8154.
Article CAS PubMed PubMed Central Google Scholar
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Circulation. 2019;140:e382–482. https://doi.org/10.1161/cir.0000000000000628.
Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabés JA, Boriani G, Braunschweig F, Brignole M, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42:3427–520. https://doi.org/10.1093/eurheartj/ehab364.
van Hemel NM, van der Wall EE. 8 October 1958, D Day for the implantable pacemaker. Neth Heart J. 2008;16:S3-4.
PubMed PubMed Central Google Scholar
Mond HG, Freitag G. The cardiac implantable electronic device power source: evolution and revolution. Pacing Clin Electrophysiol PACE. 2014;37:1728–45. https://doi.org/10.1111/pace.12526.
Hauser RG, Hayes DL, Kallinen LM, Cannom DS, Epstein AE, Almquist AK, Song SL, Tyers GF, Vlay SC, Irwin M. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm. 2007;4:154–60. https://doi.org/10.1016/j.hrthm.2006.10.009.
Sohail MR, Uslan DZ, Khan AH, Friedman PA, Hayes DL, Wilson WR, Steckelberg JM, Stoner S, Baddour LM. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J Am Coll Cardiol. 2007;49:1851–9. https://doi.org/10.1016/j.jacc.2007.01.072.
Trohman RG, Huang HD, Larsen T, Krishnan K, Sharma PS. Sensors for rate-adaptive pacing: how they work, strengths, and limitations. J Cardiovasc Electrophysiol. 2020;31:3009–27. https://doi.org/10.1111/jce.14733.
Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932–7. https://doi.org/10.1161/01.Cir.0000072769.17295.B1.
Chan KH, McGrady M, Wilcox I. A leadless intracardiac transcatheter pacing system. N Engl J Med. 2016;374:2604. https://doi.org/10.1056/NEJMc1604852.
Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological to electronic … to biological? Circ Arrhythm Electrophysiol. 2008;1:54–61. https://doi.org/10.1161/CIRCEP.108.764621.
Naumova N, Iop L. Bioengineering the cardiac conduction system: advances in cellular, gene, and tissue engineering for heart rhythm regeneration. Front Bioeng Biotechnol. 2021;9:673477. https://doi.org/10.3389/fbioe.2021.673477.
Article PubMed PubMed Central Google Scholar
Komosa ER, Wolfson DW, Bressan M, Cho HC, Ogle BM. Implementing biological pacemakers: design criteria for successful. Circul Arrhyth Electrophysiol. 2021;14:e009957. https://doi.org/10.1161/circep.121.009957.
Cingolani E, Goldhaber JI, Marbán E. Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev Cardiol. 2018;15:139–50. https://doi.org/10.1038/nrcardio.2017.165.
Qu J, Plotnikov AN, Danilo P Jr, Shlapakova I, Cohen IS, Robinson RB, Rosen MR. Expression and function of a biological pacemaker in canine heart. Circulation. 2003;107:1106–9. https://doi.org/10.1161/01.cir.0000059939.97249.2c.
Kryukova YN, Protas L, Robinson RB. Ca2+-activated adenylyl cyclase 1 introduces Ca2+-dependence to beta-adrenergic stimulation of HCN2 current. J Mol Cell Cardiol. 2012;52:1233–9. https://doi.org/10.1016/j.yjmcc.2012.03.010.
Article CAS PubMed PubMed Central Google Scholar
Edelberg JM, Aird WC, Rosenberg RD. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest. 1998;101:337–43. https://doi.org/10.1172/jci1330.
Article CAS PubMed PubMed Central Google Scholar
Miake J, Marbán E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest. 2003;111:1529–36. https://doi.org/10.1172/jci17959.
Comments (0)