The zinc finger protein ZFP36L2 inhibits flavivirus infection via the 5′-3′ XRN1-mediated RNA decay pathway in the replication complexes

Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2ʹ-5ʹoligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev. 2007;18:351–61.

Article  PubMed  Google Scholar 

Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14:778–809 (table of contents).

Article  PubMed  PubMed Central  Google Scholar 

Gao G, Guo X, Goff SP. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science. 2002;297:1703–6.

Article  PubMed  Google Scholar 

Guo X, Carroll JW, Macdonald MR, Goff SP, Gao G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol. 2004;78:12781–7.

Article  PubMed  PubMed Central  Google Scholar 

Guo X, Ma J, Sun J, Gao G. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA. 2007;104:151–6.

Article  PubMed  Google Scholar 

Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA. 2011;108:15834–9.

Article  PubMed  PubMed Central  Google Scholar 

de Andrade KQ, Cirne-Santos CC. Antiviral activity of zinc finger antiviral protein (ZAP) in different virus families. Pathogens. 2023;12:1461.

Article  PubMed  PubMed Central  Google Scholar 

Kozaki T, Komano J, Kanbayashi D, Takahama M, Misawa T, Satoh T, et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci USA. 2017;114:2681–6.

Article  PubMed  PubMed Central  Google Scholar 

Chiu H, Chiu HP, Yu HP, Lin LH, Chen ZP, Lin YL, et al. Zinc finger protein zfp36l1 inhibits flavivirus infection by both 5ʹ-3ʹ XRN1 and 3ʹ-5ʹ RNA-exosome RNA decay pathways. J Virol. 2022;96: e0166521.

Article  PubMed  Google Scholar 

Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2011;2:42–57.

Article  PubMed  Google Scholar 

Adachi S, Homoto M, Tanaka R, Hioki Y, Murakami H, Suga H, et al. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway. Nucleic Acids Res. 2014;42:10037–49.

Article  PubMed  PubMed Central  Google Scholar 

Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol. 2004;11:257–64.

Article  PubMed  Google Scholar 

Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem. 2000;275:17827–37.

Article  PubMed  Google Scholar 

Ramos SB. Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem. 2012;287:13116–27.

Article  PubMed  PubMed Central  Google Scholar 

Stumpo DJ, Broxmeyer HE, Ward T, Cooper S, Hangoc G, Chung YJ, et al. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood. 2009;114:2401–10.

Article  PubMed  PubMed Central  Google Scholar 

Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol. 2010;11:717–24.

Article  PubMed  PubMed Central  Google Scholar 

Salerno F, Engels S, van den Biggelaar M, van Alphen FPJ, Guislain A, Zhao W, et al. Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat Immunol. 2018;19:828–37.

Article  PubMed  PubMed Central  Google Scholar 

Suk FM, Chang CC, Lin RJ, Lin SY, Liu SC, Jau CF, et al. ZFP36L1 and ZFP36L2 inhibit cell proliferation in a cyclin D-dependent and p53-independent manner. Sci Rep. 2018;8:2742.

Article  PubMed  PubMed Central  Google Scholar 

Galloway A, Saveliev A, Łukasiak S, Hodson DJ, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453–9.

Article  PubMed  Google Scholar 

Bye AJH, Pugazhendhi D, Woodhouse S, Brien P, Watson R, Turner M, et al. The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skelet Muscle. 2018;8:37.

Article  Google Scholar 

Saini Y, Chen J, Patial S. The tristetraprolin family of RNA-binding proteins in cancer: progress and future prospects. Cancers (Basel). 2020;12:1539.

Article  PubMed  Google Scholar 

Wu F, Huang W, Tan Q, Guo Y, Cao Y, Shang J, et al. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1. Cell Death Dis. 2021;12:614.

Article  PubMed  PubMed Central  Google Scholar 

Angiolilli C, Leijten EFA, Bekker CPJ, Eeftink E, Giovannone B, Nordkamp MO, et al. ZFP36 family members regulate the proinflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol. 2022;142:402–13.

Article  PubMed  Google Scholar 

Arribere JA, Doudna JA, Gilbert WV. Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell. 2011;44:745–58.

Article  PubMed  PubMed Central  Google Scholar 

Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36:932–41.

Article  PubMed  PubMed Central  Google Scholar 

Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal. 2011;23:324–34.

Article  PubMed  Google Scholar 

Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: from viruses to cancer epigenetic machinery. Cell Biol Int. 2021;45:708–19.

Article  PubMed  Google Scholar 

Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA. 2013;4:317–31.

Article  PubMed  PubMed Central  Google Scholar 

Malinowska M, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Stress granules (SG) and processing bodies (PB) in viral infections. Acta Biochim Pol. 2016;63:183–8.

Article  PubMed  Google Scholar 

Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology. 2013;436:255–67.

Article  PubMed  Google Scholar 

Luo Y, Na Z, Slavoff SA. P-Bodies: composition, properties, and functions. Biochemistry. 2018;57:2424–31.

Article  PubMed  Google Scholar 

Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5ʹ→3ʹ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta. 2013;1829:590–603.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. Competing and noncompeting activities of miR-122 and the 5ʹ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci USA. 2013;110:1881–6.

Article  PubMed  Google Scholar 

Li Y, Yamane D, Lemon SM. Dissecting the roles of the 5ʹ exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication. J Virol. 2015;89:4857–65.

Article  PubMed 

Comments (0)

No login
gif