Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2ʹ-5ʹoligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev. 2007;18:351–61.
Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14:778–809 (table of contents).
Article PubMed PubMed Central Google Scholar
Gao G, Guo X, Goff SP. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science. 2002;297:1703–6.
Guo X, Carroll JW, Macdonald MR, Goff SP, Gao G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol. 2004;78:12781–7.
Article PubMed PubMed Central Google Scholar
Guo X, Ma J, Sun J, Gao G. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA. 2007;104:151–6.
Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA. 2011;108:15834–9.
Article PubMed PubMed Central Google Scholar
de Andrade KQ, Cirne-Santos CC. Antiviral activity of zinc finger antiviral protein (ZAP) in different virus families. Pathogens. 2023;12:1461.
Article PubMed PubMed Central Google Scholar
Kozaki T, Komano J, Kanbayashi D, Takahama M, Misawa T, Satoh T, et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci USA. 2017;114:2681–6.
Article PubMed PubMed Central Google Scholar
Chiu H, Chiu HP, Yu HP, Lin LH, Chen ZP, Lin YL, et al. Zinc finger protein zfp36l1 inhibits flavivirus infection by both 5ʹ-3ʹ XRN1 and 3ʹ-5ʹ RNA-exosome RNA decay pathways. J Virol. 2022;96: e0166521.
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2011;2:42–57.
Adachi S, Homoto M, Tanaka R, Hioki Y, Murakami H, Suga H, et al. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway. Nucleic Acids Res. 2014;42:10037–49.
Article PubMed PubMed Central Google Scholar
Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol. 2004;11:257–64.
Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem. 2000;275:17827–37.
Ramos SB. Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem. 2012;287:13116–27.
Article PubMed PubMed Central Google Scholar
Stumpo DJ, Broxmeyer HE, Ward T, Cooper S, Hangoc G, Chung YJ, et al. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood. 2009;114:2401–10.
Article PubMed PubMed Central Google Scholar
Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol. 2010;11:717–24.
Article PubMed PubMed Central Google Scholar
Salerno F, Engels S, van den Biggelaar M, van Alphen FPJ, Guislain A, Zhao W, et al. Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat Immunol. 2018;19:828–37.
Article PubMed PubMed Central Google Scholar
Suk FM, Chang CC, Lin RJ, Lin SY, Liu SC, Jau CF, et al. ZFP36L1 and ZFP36L2 inhibit cell proliferation in a cyclin D-dependent and p53-independent manner. Sci Rep. 2018;8:2742.
Article PubMed PubMed Central Google Scholar
Galloway A, Saveliev A, Łukasiak S, Hodson DJ, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453–9.
Bye AJH, Pugazhendhi D, Woodhouse S, Brien P, Watson R, Turner M, et al. The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skelet Muscle. 2018;8:37.
Saini Y, Chen J, Patial S. The tristetraprolin family of RNA-binding proteins in cancer: progress and future prospects. Cancers (Basel). 2020;12:1539.
Wu F, Huang W, Tan Q, Guo Y, Cao Y, Shang J, et al. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1. Cell Death Dis. 2021;12:614.
Article PubMed PubMed Central Google Scholar
Angiolilli C, Leijten EFA, Bekker CPJ, Eeftink E, Giovannone B, Nordkamp MO, et al. ZFP36 family members regulate the proinflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol. 2022;142:402–13.
Arribere JA, Doudna JA, Gilbert WV. Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell. 2011;44:745–58.
Article PubMed PubMed Central Google Scholar
Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36:932–41.
Article PubMed PubMed Central Google Scholar
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal. 2011;23:324–34.
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: from viruses to cancer epigenetic machinery. Cell Biol Int. 2021;45:708–19.
Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA. 2013;4:317–31.
Article PubMed PubMed Central Google Scholar
Malinowska M, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Stress granules (SG) and processing bodies (PB) in viral infections. Acta Biochim Pol. 2016;63:183–8.
Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology. 2013;436:255–67.
Luo Y, Na Z, Slavoff SA. P-Bodies: composition, properties, and functions. Biochemistry. 2018;57:2424–31.
Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5ʹ→3ʹ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta. 2013;1829:590–603.
Article PubMed PubMed Central Google Scholar
Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. Competing and noncompeting activities of miR-122 and the 5ʹ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci USA. 2013;110:1881–6.
Li Y, Yamane D, Lemon SM. Dissecting the roles of the 5ʹ exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication. J Virol. 2015;89:4857–65.
Comments (0)