Gieseler K, Qadota H, Benian GM. Development, structure, and maintenance of C. elegans body wall muscle. WormBook. 2017;2017:1–59.
Lecroisey C, Segalat L, Gieseler K. The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil. 2007;28(1):79–87.
Article CAS PubMed Google Scholar
Benian GM, Epstein HF. Caenorhabditis elegans muscle: a genetic and molecular model for protein interactions in the heart. Circ Res. 2011;109(9):1082–95.
Article CAS PubMed Google Scholar
Hrach HC, O’Brien S, Steber HS, Newbern J, Rawls A, Mangone M. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. Hum Mol Genet. 2020;29(10):1607–23.
Article CAS PubMed PubMed Central Google Scholar
Chaya T, Patel S, Smith EM, Lam A, Miller EN, Clupper M, Kervin K, Tanis JE. A C. elegans genome-wide RNAi screen for altered levamisole sensitivity identifies genes required for muscle function. G3 (Bethesda). 2021;11(4):jkab047.
Article CAS PubMed Google Scholar
Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, et al. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A. 2021;118(9):e2018342118.
Article CAS PubMed PubMed Central Google Scholar
Yue Y, Li S, Shen P, Park Y. Caenorhabditis elegans as a model for obesity research. Curr Res Food Sci. 2021;4:692–7.
Article CAS PubMed PubMed Central Google Scholar
Chandler RJ, Cogo S, Lewis PA, Kevei E. Modelling the functional genomics of Parkinson’s disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep. 2021;41(9):BSR20203672.
Article CAS PubMed PubMed Central Google Scholar
Natale C, Barzago MM, Diomede L. Caenorhabditis elegans models to investigate the mechanisms underlying tau toxicity in tauopathies. Brain Sci. 2020;10(11):838.
Article CAS PubMed PubMed Central Google Scholar
Markaki M, Tavernarakis N. Caenorhabditis elegans as a model system for human diseases. Curr Opin Biotechnol. 2020;63:118–25.
Article CAS PubMed Google Scholar
Song BM, Avery L. The pharynx of the nematode C. elegans: a model system for the study of motor control. Worm. 2013;2(1):e21833.
Article PubMed PubMed Central Google Scholar
Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biol. 2015;13:4.
Article PubMed PubMed Central Google Scholar
Blazie SM, Geissel HC, Wilky H, Joshi R, Newbern J, Mangone M. Alternative polyadenylation directs tissue-specific miRNA targeting in Caenorhabditis elegans somatic tissues. Genetics. 2017;206(2):757–74.
Article CAS PubMed PubMed Central Google Scholar
Fox RM, Watson JD, Von Stetina SE, McDermott J, Brodigan TM, Fukushige T, Krause M, Miller DM 3rd. The embryonic muscle transcriptome of Caenorhabditis elegans. Genome Biol. 2007;8(9):R188.
Article PubMed PubMed Central Google Scholar
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.
Article CAS PubMed Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.
Article CAS PubMed Google Scholar
Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51.
Article CAS PubMed PubMed Central Google Scholar
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.
Article CAS PubMed Google Scholar
Kawamata T, Tomari Y. Making RISC. Trends Biochem Sci. 2010;35(7):368–76.
Article CAS PubMed Google Scholar
Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, Eberhard R, Browne C, Hengartner MO, Mellor J, Tian B, et al. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3’-end-seq. Nucleic Acids Res. 2012;40(13):6304–18.
Article CAS PubMed PubMed Central Google Scholar
Serizay J, Dong Y, Janes J, Chesney M, Cerrato C, Ahringer J. Distinctive regulatory architectures of germline-active and somatic genes in C. elegans. Genome Res. 2020;30(12):1752–65.
Article CAS PubMed PubMed Central Google Scholar
Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun. 2021;12(1):2194.
Article CAS PubMed PubMed Central Google Scholar
Alberti C, Manzenreither RA, Sowemimo I, Burkard TR, Wang J, Mahofsky K, Ameres SL, Cochella L. Cell-type specific sequencing of microRNAs from complex animal tissues. Nat Methods. 2018;15(4):283–9.
Article CAS PubMed PubMed Central Google Scholar
Kotagama K, Schorr AL, Steber HS, Mangone M. ALG-1 influences accurate mRNA splicing patterns in the Caenorhabditis elegans intestine and body muscle tissues by modulating splicing factor activities. Genetics. 2019;212(3):931–51.
Article CAS PubMed PubMed Central Google Scholar
Gomez-Saldivar G, Fernandez A, Hirano Y, Mauro M, Lai A, Ayuso C, Haraguchi T, Hiraoka Y, Piano F, Askjaer P. Identification of conserved MEL-28/ELYS domains with essential roles in nuclear assembly and chromosome segregation. PLoS Genet. 2016;12(6):e1006131.
Article PubMed PubMed Central Google Scholar
Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics. 2018;210(2):445–61.
Article CAS PubMed PubMed Central Google Scholar
Grishkevich V, Hashimshony T, Yanai I. Core promoter T-blocks correlate with gene expression levels in C. elegans. Genome Res. 2011;21(5):707–17.
Article CAS PubMed PubMed Central Google Scholar
Prosdocimo DA, Sabeh MK, Jain MK. Kruppel-like factors in muscle health and disease. Trends Cardiovasc Med. 2015;25(4):278–87.
Article CAS PubMed Google Scholar
Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993;364(6437):532–5.
Article CAS PubMed Google Scholar
Cogliati T, Good DJ, Haigney M, Delgado-Romero P, Eckhaus MA, Koch WJ, Kirsch IR. Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice. Mol Cell Biol. 2002;22(14):4977–83.
Article CAS PubMed PubMed Central Google Scholar
Miao W, Ma Z, Tang Z, Yu L, Liu S, Huang T, Wang P, Wu T, Song Z, Zhang H, et al. Integrative ATAC-seq and RNA-seq analysis of the longissimus muscle of Luchuan and Duroc pigs. Front Nutr. 2021;8:742672.
Article PubMed PubMed Central Google Scholar
Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJ. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008;18(12):2005–15.
Article CAS PubMed PubMed Central Google Scholar
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007;3(12):e215.
Article PubMed PubMed Central Google Scholar
Mei Q, Li X, Meng Y, Wu Z, Guo M, Zhao Y, Fu X, Han W. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One. 2012;7(10):e46890.
Comments (0)