Ablation of progranulin augments microglial activation and accelerates prion progression

Rhinn H, Tatton N, McCaughey S, Kurnellas M, Rosenthal A (2022) Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci: https://doi.org/10.1016/j.tips.2021.11.015

Article  Google Scholar 

Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, Van Swieten J, Carmeliet P, Van den Bosch L, Robberecht W (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181:37–41. https://doi.org/10.1083/jcb.200712039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Xilouri M, Bruban J, Shioi J, Shao Z, Papazoglou I, Vekrellis K, Robakis NK (2011) Extracellular progranulin protects cortical neurons from toxic insults by activating survival signaling. Neurobiol Aging 32(2326 e2325–2316). https://doi.org/10.1016/j.neurobiolaging.2011.06.017

Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson Set al et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919. https://doi.org/10.1038/nature05016

Article  CAS  PubMed  Google Scholar 

Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B Martin JJ (2006) null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924 https://doi.org/10.1038/nature05017

Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, Crook R, Melquist S, Kuntz K, Petersen Ret al et al (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal Lobar degeneration. Hum Mol Genet 15:2988–3001. https://doi.org/10.1093/hmg/ddl241

Article  CAS  PubMed  Google Scholar 

Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, Kwong LK, Lee VM, Schellenberg GD, Bird TD (2007) A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain 130:1360–1374. https://doi.org/10.1093/brain/awm069

Article  CAS  PubMed  Google Scholar 

Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CMet al et al (2006) Ubiquitinated TDP-43 in frontotemporal Lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. https://doi.org/10.1126/science.1134108

Article  CAS  PubMed  Google Scholar 

Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–667. https://doi.org/10.1016/j.neuron.2010.09.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ, Smolka MB, Sun Y, Hu F (2015) Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol 210:991–1002. https://doi.org/10.1083/jcb.201502029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almeida S, Gao F, Coppola G, Gao FB (2016) Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients. Neurobiol Aging 42:35–40. https://doi.org/10.1016/j.neurobiolaging.2016.03.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canafoglia L, Morbin M, Scaioli V, Pareyson D, D’Incerti L, Fugnanesi V, Tagliavini F, Berkovic SF, Franceschetti S (2014) Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia 55:e56–e59. https://doi.org/10.1111/epi.12632

Article  CAS  PubMed  Google Scholar 

Faber I, Prota JR, Martinez AR, Lopes-Cendes I, Franca MCJ (2017) A new phenotype associated with homozygous GRN mutations: complicated spastic paraplegia. Eur J Neurol 24:e3–e4. https://doi.org/10.1111/ene.13194

Article  CAS  PubMed  Google Scholar 

Huin V, Barbier M, Bottani A, Lobrinus JA, Clot F, Lamari F, Chat L, Rucheton B, Fluchere F, Auvin Set al et al (2020) Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain 143:303–319. https://doi.org/10.1093/brain/awz377

Article  PubMed  Google Scholar 

Kamate M, Detroja M, Hattiholi V (2019) Neuronal ceroid lipofuscinosis type-11 in an adolescent. Brain Dev 41:542–545. https://doi.org/10.1016/j.braindev.2019.03.004

Article  PubMed  Google Scholar 

Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, Rossi G, Pareyson D, Mole SE, Staropoli JFet al et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107. https://doi.org/10.1016/j.ajhg.2012.04.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brouwers N, Sleegers K, Engelborghs S, Maurer-Stroh S, Gijselinck I, van der Zee J, Pickut BA, Van den Broeck M, Mattheijssens M, Peeters K al (2008) Genetic variability in progranulin contributes to risk for clinically diagnosed alzheimer disease. Neurology 71:656–664. https://doi.org/10.1212/01.wnl.0000319688.89790.7a

Article  CAS  PubMed  Google Scholar 

Cruchaga C, Haller G, Chakraverty S, Mayo K, Vallania FL, Mitra RD, Faber K, Williamson J, Bird T, Diaz-Arrastia R et al (2012) Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One 7:e31039 https://doi.org/10.1371/journal.pone.0031039

Fenoglio C, Galimberti D, Cortini F, Kauwe JS, Cruchaga C, Venturelli E, Villa C, Serpente M, Scalabrini D, Mayo K et al (2009) Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer’s disease. J Alzheimers Dis 18:603–612 https://doi.org/10.3233/JAD-2009-1170

Hsiung GY, Fok A, Feldman HH, Rademakers R, Mackenzie IR (2011) rs5848 polymorphism and serum progranulin level. J Neurol Sci 300:28–32. https://doi.org/10.1016/j.jns.2010.10.009

Article  CAS  PubMed  Google Scholar 

Lee MJ, Chen TF, Cheng TW, Chiu MJ (2011) rs5848 variant of progranulin gene is a risk of alzheimer’s disease in the Taiwanese population. Neurodegener Dis 8:216–220. https://doi.org/10.1159/000322538

Article  CAS  PubMed  Google Scholar 

Perry DC, Lehmann M, Yokoyama JS, Karydas A, Lee JJ, Coppola G, Grinberg LT, Geschwind D, Seeley WW, Miller BLet al et al (2013) Progranulin mutations as risk factors for alzheimer disease. Jama Neurol 70:774–778. https://doi.org/10.1001/2013.jamaneurol.393

Article  PubMed  PubMed Central  Google Scholar 

Sheng JH, Su LL, Xu ZP, Chen GD (2014) Progranulin polymorphism rs5848 is associated with increased risk of alzheimer’s disease. Gene 542:141–145. https://doi.org/10.1016/j.gene.2014.03.041

Article  CAS  PubMed  Google Scholar 

Vardarajan BN, Reyes-Dumeyer D, Piriz AL, Lantigua RA, Medrano M, Rivera D, Jimenez-Velazquez IZ, Martin E, Pericak-Vance MA, Bush W et al (2022) Progranulin mutations in clinical and neuropathological Alzheimer’s disease. Alzheimers Dement: https://doi.org/10.1002/alz.12567

Viswanathan J, Makinen P, Helisalmni S, Haapasalo A, Soininen H, Hiltunen M (2009) An association study between granulin gene polymorphisms and alzheimer’s disease in Finnish population. Am J Med Genet B 150b:747–750. https://doi.org/10.1002/ajmg.b.30889

Article  CAS  Google Scholar 

Xu HM, Tan L, Wan Y, Tan MS, Zhang W, Zheng ZJ, Kong LL, Wang ZX, Jiang T, Tan L al (2017) PGRN is associated with Late-Onset alzheimer’s disease: a Case-Control replication study and Meta-analysis. Mol Neurobiol 54:1187–1195. https://doi.org/10.1007/s12035-016-9698-4

Article  CAS  PubMed  Google Scholar 

Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, Tan M, Kia DA, Noyce AJ, Xue A al (2019) Identification of novel risk loci, causal insights, and heritable risk for parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102. https://doi.org/10.1016/S1474-4422(19)30320-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sleegers K, Brouwers N, Maurer-Stroh S, van Es MA, Van Damme P, van Vught PW, van der Zee J, Serneels S, De Pooter T Broeck M et al (2008) Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology 71: 253–259 https://doi.org/10.1212/01.wnl.0000289191.54852.75

Masellis M, Momeni P, Meschino W, Heffner R Jr., Elder J, Sato C, Liang Y, St George-Hyslop P, Hardy J, Bilbao Jet al et al (2006) Novel splicing mutation in the progranulin gene causing Familial corticobasal syndrome. Brain 129:3115–3123. https://doi.org/10.1093/brain/awl276

Article  PubMed  Google Scholar 

Redaelli V, Rossi G, Maderna E, Kovacs GG, Piccoli E, Caroppo P, Cacciatore F, Spinello S, Grisoli M, Sozzi G al (2018) Alzheimer neuropathology without frontotemporal Lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg. Brain Pathol 28:72–76. https://doi.org/10.1111/bpa.12480

Article  CAS  PubMed  Google Scholar 

Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne Cet al et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142:1503–1527. https://doi.org/10.1093/brain/awz099

Article 

Comments (0)

No login
gif