Adamczyk A, Strosznajder JB (2006) Alpha-synuclein potentiates Ca2 + influx through voltage dependent Ca2 + channels. NeuroReport 17(18):1883–1886
Article PubMed CAS Google Scholar
Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29(6):775
Article PubMed CAS Google Scholar
Aichbichler BW, Wenzl HH, Ana CAS, Porter JL, Schiller LR, Fordtran JS (1998) A comparison of stool characteristics from normal and constipated people, vol 43. Digestive Diseases and Sciences, pp 2353–2362. 11
Anderson G, Noorian AR, Taylor G, Anitha M, Bernhard D, Srinivasan S, Greene JG (2007) Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 207(1):4–12
Article PubMed PubMed Central CAS Google Scholar
Angelova PR, Ludtmann MHR, Horrocks MH, Negoda A, Cremades N, Klenerman D et al (2016) Ca2 + is a key factor in α-synuclein-induced neurotoxicity. J Cell Sci 129(9):1792–1801
Article PubMed PubMed Central CAS Google Scholar
Annerino DM, Arshad S, Taylor GM, Adler CH, Beach TG, Greene JG (2012) Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 124(5):665–680
Article PubMed PubMed Central Google Scholar
Arnaud MJ (2003) Mild dehydration: a risk factor of constipation? Eur J Clin Nutr 57(2):S88–S95
Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD et al (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7(1):16878
Article PubMed PubMed Central Google Scholar
Barone F, Deegan J, Price W, Fowler P, Fondacaro J (1990) Ormsbee 3rd, Cold-restraint stress increases rat fecal pellet output and colonic transit. Am J Physiology-Gastrointestinal Liver Physiol 258(3):G329–G337
Bassotti G, Villanacci V, Nascimbeni R, Asteria C, Fisogni S, Nesi G et al (2006) Neuropathological aspects of the colonin obstructed defecation, vol 18. NEUROGASTROENTEROLOGY AND MOTILITY, pp 698–699
Bassotti G, Villanacci V, Nascimbeni R, Asteria CR, Fisogni S, Nesi G et al (2007) Colonic neuropathological aspects in patients with intractable constipation due to obstructed defecation. Mod Pathol 20(3):367–374
Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White CL Iii et al (2010) Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702
Article PubMed PubMed Central CAS Google Scholar
Berardelli A, Rothwell JC, Thompson PD, Hallett M. (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain. 124(11):2131–2146.
Blandini F, Balestra B, Levandis G, Cervio M, Greco R, Tassorelli C et al (2009) Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson’s disease. Neurosci Lett 467:203–207
Article PubMed CAS Google Scholar
Bo Y, Xiao Z-y, Li J-z, Jing Y, Liu Y-m (2010) Study of an integrated non-motor symptoms questionnaire for Parkinson’s disease. Chin Med J 123(11):1436–1440
Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V (2015) Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63(2):229–241
Carbone S, Jovanovska V, Brookes S, Nurgali K (2016) Electrophysiological and morphological changes in colonic myenteric neurons from chemotherapy-treated patients: a pilot study, vol 28. Neurogastroenterology & Motility, pp 975–984. 7
Cersosimo MG, Benarroch EE (2012) Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46(3):559–564
Challis C, Hori A, Sampson TR, Yoo BB, Challis RC, Hamilton AM et al (2020) Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci,: p. 1–10
Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474
Chen L, Xie Z, Turkson S, Zhuang X (2015) A53T human α-Synuclein overexpression in transgenic mice induces pervasive Mitochondria Macroautophagy defects preceding dopamine Neuron Degeneration. J Neurosci 35(3):890–905
Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67(6):715–725
Article PubMed PubMed Central Google Scholar
Choi JG, Huh E, Ju IG, Kim N, Yun J, Oh MS (2018) 1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine/probenecid impairs intestinal motility and olfaction in the early stages of Parkinson’s disease in mice. J Neurol Sci 392:77–82
Article PubMed CAS Google Scholar
Coelho-Aguiar Jde M, Bon-Frauches AC, Gomes AL, Verissimo CP, Aguiar DP, Matias D et al (2015) The enteric glia: identity and functions. Glia 63(6):921–935
Colucci M, Cervio M, Faniglione M, De Angelis S, Pajoro M, Levandis G et al (2012) Intestinal dysmotility and enteric neurochemical changes in a Parkinson’s disease rat model. Auton Neurosci 169(2):77–86
Article PubMed CAS Google Scholar
Cummings J, Jenkins D, Wiggins H (1976) Measurement of the mean transit time of dietary residue through the human gut. Gut 17(3):210–218
Article PubMed PubMed Central CAS Google Scholar
Cummings J, Wiggins H, Jenkins D, Houston H, Jivraj T, Drasar B, Hill M (1978) Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion. J Clin Investig 61(4):953–963
Article PubMed PubMed Central CAS Google Scholar
De Giorgio R, Giancola F, Boschetti E, Abdo H, Lardeux B, Neunlist M (2012) Enteric glia and neuroprotection: basic and clinical aspects. Am J Physiology-Gastrointestinal Liver Physiol 303(8):G887–G893
Desmet AS, Cirillo C, Tack J, Vandenberghe W, Vanden P, Berghe (2017) Live Calcium Mitochondrial Imaging Enteric Nerv Syst Parkinson Patients Controls Elife, 6
Desmet AS, Cirillo C, Vanden P, Berghe (2014) Distinct subcellular localization of the neuronal marker HuC/D reveals hypoxia-induced damage in enteric neurons. Neurogastroenterology Motil 26(8):1131–1143
Diwakarla S, Finkelstein DI, Constable R, Artaiz O, Natale MD, McQuade RM et al (2019) Chronic isolation stress is associated with increased colonic and motor symptoms in the A53T mouse model of Parkinson’s disease. Neurogastroenterology Motil 32(3):e13755
Diwakarla S, McQuade RM, Constable R, Artaiz O, Lei E, Barnham KJ et al (2021) ATH434 reverses colorectal dysfunction in the A53T mouse model of Parkinson’s Disease. J Parkinson’s Disease 11:1821–1832
Drolet RE, Cannon JR, Montero L, Greenamyre JT (2009) Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis 36(1):96–102
Article PubMed CAS Google Scholar
Edwards LL, Quigley EM, Pfeiffer RF (1992) Gastrointestinal dysfunction in Parkinson’s disease: frequency and pathophysiology. Neurology 42(4):726–732
Article PubMed CAS Google Scholar
Ellett LJ, Hung LW, Munckton R, Sherratt NA, Culvenor J, Grubman A et al (2016) Restoration of intestinal function in an MPTP model of Parkinson’s Disease. Sci Rep 6:30269
Article PubMed PubMed Central CAS Google Scholar
Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome, first published: 24 January 2006.
Farrell KF, Krishnamachari S, Villanueva E, Lou H, Alerte TN, Peet E et al (2014) Non-motor parkinsonian pathology in aging A53T alpha-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function. J Neurochem 128(4):536–546
Article PubMed CAS Google Scholar
Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14:625–639
Article PubMed CAS Google Scholar
Furness JB (2006) The enteric nervous system. Blackwell, Oxford, pp 1–274
Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Reviews Gastroenterol Hepatol 9(5):286–294
Comments (0)