Oener, S. Z., Bergmann, A. & Cuenya, B. R. Designing active oxides for a durable oxygen evolution reaction. Nat. Synth. 2, 817–827 (2023).
Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).
Article CAS PubMed Google Scholar
Ou, Y. et al. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base. Nat. Commun. 14, 7688 (2023).
Article CAS PubMed PubMed Central Google Scholar
Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).
Article CAS PubMed Google Scholar
Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).
Article CAS PubMed Google Scholar
Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).
Article CAS PubMed Google Scholar
Huang, J. et al. Oxidation of interfacial cobalt controls the pH dependence of the oxygen evolution reaction. Nat. Chem. 17, 856–864 (2025).
Haase, F. T. et al. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 7, 765–773 (2022).
Dudzinski, A. M., Diesen, E., Heenen, H. H., Bukas, V. J. & Reuter, K. First step of the oxygen reduction reaction on Au(111): a computational study of O2 adsorption at the electrified metal/water Interface. ACS Catal. 13, 12074–12081 (2023).
Shao, M., Liu, P. & Adzic, R. R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128, 7408–7409 (2006).
Article CAS PubMed Google Scholar
Katsounaros, I., Chen, T., Gewirth, A. A., Markovic, N. M. & Koper, M. T. M. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100). J. Phys. Chem. Lett. 7, 387–392 (2016).
Article CAS PubMed Google Scholar
Rosca, V. & Koper, M. T. M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Phys. Chem. Chem. Phys. 8, 2513–2524 (2006).
Article CAS PubMed Google Scholar
Ringe, S., Hörmann, N. G., Oberhofer, H. & Reuter, K. Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. 122, 10777–10820 (2022).
Article CAS PubMed Google Scholar
Abidi, N. & Steinmann, S. N. How are transition states modeled in heterogeneous electrocatalysis? Curr. Opin. Electrochem. 33, 100940 (2022).
Evans, M. G. & Polanyi, M. Further considerations on the thermodynamics of chemical equilibria and reaction rates. Trans. Faraday Soc. 32, 1333–1360 (1936).
Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938).
Bell, R. P. & Hinshelwood, C. N. The theory of reactions involving proton transfers. Proc. R. Soc. A 154, 414–429 (1936).
Bronsted, J. N. Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928).
Brönsted, J. N. & Pedersen, K. Die katalytische Zersetzung des Nitramids und ihre physikalisch-chemische Bedeutung. Z. fur Phys. Chem. 108U, 185–235 (1924).
Evans, M. G. & Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935).
Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).
Article CAS PubMed PubMed Central Google Scholar
Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis—uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).
Article PubMed PubMed Central Google Scholar
He, Z., Chen, Y., Santos, E. & Schmickler, W. The pre‐exponential factor in electrochemistry. Angew. Chem. Int. Ed. 57, 7948–7956 (2018).
Gisbert-González, J. M. et al. Bias dependence of the transition state of the hydrogen evolution reaction. J. Am. Chem. Soc. 147, 5472–5485 (2025).
Article PubMed PubMed Central Google Scholar
Sarabia, F., Gomez Rodellar, C., Roldan Cuenya, B. & Oener, S. Z. Exploring dynamic solvation kinetics at electrocatalyst surfaces. Nat. Commun. 15, 8204 (2024).
Article CAS PubMed PubMed Central Google Scholar
Rodellar, C. G., Gisbert-Gonzalez, J. M., Sarabia, F., Roldan Cuenya, B. & Oener, S. Z. Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces. Nat. Energy 9, 548–558 (2024).
Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).
Santos, E., Aradi, B., Van Der Heide, T. & Schmickler, W. Free energy curves for the Volmer reaction obtained from molecular dynamics simulation based on quantum chemistry. J. Electroanalyt. Chem. 954, 118044 (2024).
Conway, B. E. & Wilkinson, D. F. Entropic and enthalpic components of the symmetry factor for electrochemical proton transfer from various proton donors over a wide temperature range. J. Electroanal. Chem. Interfacial Electrochem. 214, 633–653 (1986).
Conway, B. E., Phillips, Y. & Qian, S. Y. Surface electrochemistry and kinetics of anodic bromine formation at platinum. J. Chem. Soc. 91, 283–293 (1995).
Conway, B. E., Tessier, D. F. & Wilkinson, D. P. Experimental evidence for the potential-dependence of entropy of activation in electrochemical reactions in relations to the temperature-dependence of tafel slopes. J. Electroanal. Chem. Interfacial Electrochem. 199, 249–269 (1986).
Conway, B. E., Tessier, D. F. & Wilkinson, D. P. Temperature dependence of the Tafel slope and electrochemical barrier symmetry factor, β, in electrode kinetics. J. Electrochem. Soc. 136, 2486 (1989).
Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).
Zeradjanin, A. R., Menzel, N., Strasser, P. & Schuhmann, W. Role of water in the chlorine evolution reaction at RuO2‐based electrodes—understanding electrocatalysis as a resonance phenomenon. ChemSusChem 5, 1897–1904 (2012).
Article CAS PubMed Google Scholar
Zeradjanin, A. R. Understanding entropic barriers. Nat. Energy https://doi.org/10.1038/s41560-024-01502-0 (2024).
Kazemi, M. & Åqvist, J. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots. Nat. Commun. 6, 7293 (2015).
Comments (0)