Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction

Oener, S. Z., Bergmann, A. & Cuenya, B. R. Designing active oxides for a durable oxygen evolution reaction. Nat. Synth. 2, 817–827 (2023).

Article  CAS  Google Scholar 

Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

Article  CAS  PubMed  Google Scholar 

Ou, Y. et al. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base. Nat. Commun. 14, 7688 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

Article  CAS  PubMed  Google Scholar 

Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).

Article  CAS  PubMed  Google Scholar 

Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

Article  CAS  PubMed  Google Scholar 

Huang, J. et al. Oxidation of interfacial cobalt controls the pH dependence of the oxygen evolution reaction. Nat. Chem. 17, 856–864 (2025).

Haase, F. T. et al. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 7, 765–773 (2022).

Article  CAS  Google Scholar 

Dudzinski, A. M., Diesen, E., Heenen, H. H., Bukas, V. J. & Reuter, K. First step of the oxygen reduction reaction on Au(111): a computational study of O2 adsorption at the electrified metal/water Interface. ACS Catal. 13, 12074–12081 (2023).

Article  CAS  Google Scholar 

Shao, M., Liu, P. & Adzic, R. R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128, 7408–7409 (2006).

Article  CAS  PubMed  Google Scholar 

Katsounaros, I., Chen, T., Gewirth, A. A., Markovic, N. M. & Koper, M. T. M. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100). J. Phys. Chem. Lett. 7, 387–392 (2016).

Article  CAS  PubMed  Google Scholar 

Rosca, V. & Koper, M. T. M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Phys. Chem. Chem. Phys. 8, 2513–2524 (2006).

Article  CAS  PubMed  Google Scholar 

Ringe, S., Hörmann, N. G., Oberhofer, H. & Reuter, K. Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. 122, 10777–10820 (2022).

Article  CAS  PubMed  Google Scholar 

Abidi, N. & Steinmann, S. N. How are transition states modeled in heterogeneous electrocatalysis? Curr. Opin. Electrochem. 33, 100940 (2022).

Article  CAS  Google Scholar 

Evans, M. G. & Polanyi, M. Further considerations on the thermodynamics of chemical equilibria and reaction rates. Trans. Faraday Soc. 32, 1333–1360 (1936).

Article  CAS  Google Scholar 

Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938).

Article  CAS  Google Scholar 

Bell, R. P. & Hinshelwood, C. N. The theory of reactions involving proton transfers. Proc. R. Soc. A 154, 414–429 (1936).

Google Scholar 

Bronsted, J. N. Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928).

Article  CAS  Google Scholar 

Brönsted, J. N. & Pedersen, K. Die katalytische Zersetzung des Nitramids und ihre physikalisch-chemische Bedeutung. Z. fur Phys. Chem. 108U, 185–235 (1924).

Article  Google Scholar 

Evans, M. G. & Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935).

Article  CAS  Google Scholar 

Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis—uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).

Article  PubMed  PubMed Central  Google Scholar 

He, Z., Chen, Y., Santos, E. & Schmickler, W. The pre‐exponential factor in electrochemistry. Angew. Chem. Int. Ed. 57, 7948–7956 (2018).

Article  CAS  Google Scholar 

Gisbert-González, J. M. et al. Bias dependence of the transition state of the hydrogen evolution reaction. J. Am. Chem. Soc. 147, 5472–5485 (2025).

Article  PubMed  PubMed Central  Google Scholar 

Sarabia, F., Gomez Rodellar, C., Roldan Cuenya, B. & Oener, S. Z. Exploring dynamic solvation kinetics at electrocatalyst surfaces. Nat. Commun. 15, 8204 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodellar, C. G., Gisbert-Gonzalez, J. M., Sarabia, F., Roldan Cuenya, B. & Oener, S. Z. Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces. Nat. Energy 9, 548–558 (2024).

Article  CAS  Google Scholar 

Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

Article  CAS  Google Scholar 

Santos, E., Aradi, B., Van Der Heide, T. & Schmickler, W. Free energy curves for the Volmer reaction obtained from molecular dynamics simulation based on quantum chemistry. J. Electroanalyt. Chem. 954, 118044 (2024).

Article  CAS  Google Scholar 

Conway, B. E. & Wilkinson, D. F. Entropic and enthalpic components of the symmetry factor for electrochemical proton transfer from various proton donors over a wide temperature range. J. Electroanal. Chem. Interfacial Electrochem. 214, 633–653 (1986).

Article  CAS  Google Scholar 

Conway, B. E., Phillips, Y. & Qian, S. Y. Surface electrochemistry and kinetics of anodic bromine formation at platinum. J. Chem. Soc. 91, 283–293 (1995).

CAS  Google Scholar 

Conway, B. E., Tessier, D. F. & Wilkinson, D. P. Experimental evidence for the potential-dependence of entropy of activation in electrochemical reactions in relations to the temperature-dependence of tafel slopes. J. Electroanal. Chem. Interfacial Electrochem. 199, 249–269 (1986).

Article  CAS  Google Scholar 

Conway, B. E., Tessier, D. F. & Wilkinson, D. P. Temperature dependence of the Tafel slope and electrochemical barrier symmetry factor, β, in electrode kinetics. J. Electrochem. Soc. 136, 2486 (1989).

Article  CAS  Google Scholar 

Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

Article  CAS  Google Scholar 

Zeradjanin, A. R., Menzel, N., Strasser, P. & Schuhmann, W. Role of water in the chlorine evolution reaction at RuO2‐based electrodes—understanding electrocatalysis as a resonance phenomenon. ChemSusChem 5, 1897–1904 (2012).

Article  CAS  PubMed  Google Scholar 

Zeradjanin, A. R. Understanding entropic barriers. Nat. Energy https://doi.org/10.1038/s41560-024-01502-0 (2024).

Article  Google Scholar 

Kazemi, M. & Åqvist, J. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots. Nat. Commun. 6, 7293 (2015).

Article  CAS  PubMed 

Comments (0)

No login
gif