Reserved charges in a long-lived NiOOH phase drive catalytic water oxidation

Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

Article  PubMed  CAS  Google Scholar 

Ram, R. et al. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 384, 1373–1380 (2024).

Article  PubMed  CAS  Google Scholar 

Duan, Y. et al. Anodic oxidation enabled cation leaching for promoting surface reconstruction in water oxidation. Angew. Chem. Int. Ed. 60, 7418–7425 (2021).

Article  CAS  Google Scholar 

Radinger, H. et al. Importance of nickel oxide lattice defects for efficient oxygen evolution reaction. Chem. Mater. 33, 8259–8266 (2021).

Article  CAS  Google Scholar 

Kuai, C. et al. Creating compressive stress at the NiOOH/NiO interface for water oxidation. J. Mater. Chem. A 8, 10747–10754 (2020).

Article  CAS  Google Scholar 

Wang, Y.-H. et al. Defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of OER in transition metal-based (oxy)hydroxide. Adv. Sci. 10, 2303321 (2023).

Article  CAS  Google Scholar 

Tao, S., Wen, Q., Jaegermann, W. & Kaiser, B. Formation of highly active NiO(OH) thin films from electrochemically deposited Ni(OH)2 by a simple thermal treatment at a moderate temperature: a combined electrochemical and surface science investigation. ACS Catal. 12, 1508–1519 (2022).

Article  CAS  Google Scholar 

Gao, M. et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077–7084 (2014).

Article  PubMed  CAS  Google Scholar 

You, B. & Sun, Y. Hierarchically porous nickel sulfide multifunctional superstructures. Adv. Energy Mater. 6, 1502333 (2016).

Article  Google Scholar 

Zahran, Z. N. et al. Electrocatalytic water splitting with unprecedentedly low overpotentials by nickel sulfide nanowires stuffed into carbon nitride scabbards. Energy Environ. Sci. 14, 5358–5365 (2021).

Article  CAS  Google Scholar 

Xue, S., Chen, L., Liu, Z., Cheng, H.-M. & Ren, W. NiPS3 nanosheet–graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano 12, 5297–5305 (2018).

Article  PubMed  CAS  Google Scholar 

Zeng, L. et al. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 51, 26–36 (2018).

Article  CAS  Google Scholar 

Huang, J. et al. Identification of key reversible intermediates in self‐reconstructed nickel‐based hybrid electrocatalysts for oxygen evolution. Angew. Chem. Int. Ed. 58, 17458–17464 (2019).

Article  CAS  Google Scholar 

Wang, J. Controlling dynamic reconstruction chemistry for superior oxygen-evolving catalysts. Chem 9, 1645–1657 (2023).

Article  CAS  Google Scholar 

Klápště, B., Micka, K., Mrha, J. & Vondrák, J. The nature of the second discharge step of nickel oxide electrodes. J. Power Sources 8, 351–357 (1982).

Google Scholar 

Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li, Y.-F., Li, J.-L. & Liu, Z.-P. Structure and catalysis of NiOOH: recent advances on atomic simulation. J. Phys. Chem. C 125, 27033–27045 (2021).

Article  CAS  Google Scholar 

Friebel, D. et al. Identification of highly active fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

Article  PubMed  CAS  Google Scholar 

Yang, C. et al. Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction. J. Phys. Chem. Lett. 8, 3466–3472 (2017).

Article  PubMed  CAS  Google Scholar 

Dhaka, K. & Exner, K. S. Degree of span control to determine the impact of different mechanisms and limiting steps: oxygen evolution reaction over Co3O4(001) as a case study. J. Catal. 443, 115970 (2025).

Article  CAS  Google Scholar 

Lang, C. et al. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 7, 2101–2117 (2021).

Article  CAS  Google Scholar 

Ullman, A. M., Brodsky, C. N., Li, N., Zheng, S.-L. & Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 138, 4229–4236 (2016).

Article  PubMed  CAS  Google Scholar 

Li, L.-F., Li, Y.-F. & Liu, Z.-P. Oxygen evolution activity on NiOOH catalysts: four-coordinated Ni cation as the active site and the hydroperoxide mechanism. ACS Catal. 10, 2581–2590 (2020).

Article  CAS  Google Scholar 

Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

Article  PubMed  CAS  Google Scholar 

Zhang, N. et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).

Article  PubMed  CAS  Google Scholar 

Lee, S., Chu, Y. C., Bai, L., Chen, H.-M. & Hu, X. Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide. Chem Catal. 3, 100475 (2023).

CAS  Google Scholar 

Lee, H.-S. et al. Electrochemically generated electrophilic peroxo species accelerates alkaline oxygen evolution reaction. Joule 7, 1902–1919 (2023).

Article  CAS  Google Scholar 

Rao, R. R. et al. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 144, 7622–7633 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu, S. et al. Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation. Nat. Commun. 15, 1720 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hao, Y. et al. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143, 1493–1502 (2021).

Article  PubMed  CAS  Google Scholar 

Kang, J. et al. Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 144, 8969–8976 (2022).

Article  PubMed  CAS  Google Scholar 

Ferreira de Araújo, J., Dionigi, F., Merzdorf, T., Oh, H. S. & Strasser, P. Evidence of Mars–van‐Krevelen mechanism in the electrochemical oxygen evolution on Ni‐based catalysts. Angew. Chem. Int. Ed. 60, 14981–14988 (2021).

Article  Google Scholar 

Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).

Article  CAS  Google Scholar 

Görlin, M. et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082 (2017).

Article  PubMed  Google Schol

Comments (0)

No login
gif