Isotope-dependent Tafel analysis probes proton transfer kinetics during electrocatalytic water splitting

Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

Article  PubMed  Google Scholar 

Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

Article  Google Scholar 

Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

Article  CAS  PubMed  Google Scholar 

Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

Article  CAS  PubMed  Google Scholar 

Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

Article  CAS  PubMed  Google Scholar 

Kessinger, M. et al. Reorganization energies for interfacial proton-coupled electron transfer to a water oxidation catalyst. J. Am. Chem. Soc. 144, 20514–20524 (2022).

Article  CAS  PubMed  Google Scholar 

Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt–phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

Article  CAS  PubMed  Google Scholar 

Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

Article  CAS  Google Scholar 

Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

Article  CAS  PubMed  Google Scholar 

Lin, M. F. et al. Imaging the short-lived hydroxyl–hydronium pair in ionized liquid water. Science 374, 92–95 (2021).

Article  CAS  PubMed  Google Scholar 

Sivanantham, A., Ganesan, P., Vinu, A. & Shanmugam, S. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 10, 463–493 (2020).

Article  CAS  Google Scholar 

Velasco-Velez, J.-J. et al. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).

Article  CAS  PubMed  Google Scholar 

Lin, Y. et al. Quantitative isotope measurements in heterogeneous photocatalysis and electrocatalysis. Energy Environ. Sci. 13, 2602–2617 (2020).

Article  CAS  Google Scholar 

Yang, Y. et al. Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat. Chem. 15, 271–277 (2023).

Article  CAS  PubMed  Google Scholar 

Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

Article  CAS  Google Scholar 

Li, W. et al. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 10, 5074 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasquini, C. et al. H/D isotope effects reveal factors controlling catalytic activity in Co-based oxides for water oxidation. J. Am. Chem. Soc. 141, 2938–2948 (2019).

Article  CAS  PubMed  Google Scholar 

Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

Article  CAS  PubMed  Google Scholar 

Björketun, M. E., Tripkovic, V., Skúlason, E. & Rossmeisl, J. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catal. Today 202, 168–174 (2013).

Article  Google Scholar 

Bockris, J. O. M. & Nagy, Z. Symmetry factor and transfer coefficient. A source of confusion in electrode kinetics. J. Chem. Educ. 50, 839 (1973).

Article  CAS  Google Scholar 

Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem. 13, 537–549 (2009).

Article  CAS  Google Scholar 

Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 11, 8848–8871 (2021).

Article  CAS  Google Scholar 

Jackson, M. N. & Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 138, 3228–3234 (2016).

Article  CAS  PubMed  Google Scholar 

Goldsmith, Z. K., Lam, Y. C., Soudackov, A. V. & Hammes-Schiffer, S. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. J. Am. Chem. Soc. 141, 1084–1090 (2019).

Article  CAS  PubMed  Google Scholar 

Nishimoto, T., Shinagawa, T., Naito, T. & Takanabe, K. Microkinetic assessment of electrocatalytic oxygen evolution reaction over iridium oxide in unbuffered conditions. J. Catal. 391, 435–445 (2020).

Article  CAS  Google Scholar 

Hao, Y. et al. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143, 1493–1502 (2021).

Article  CAS  PubMed  Google Scholar 

van Santen, R. A., Neurock, M. & Shetty, S. G. Reactivity theory of transition-metal surfaces: a Brønsted–Evans–Polanyi linear activation energy–free-energy analysis. Chem. Rev. 110, 2005–2048 (2010).

Article  PubMed  Google Scholar 

van der Heijden, O., Park, S., Vos, R. E., Eggebeen, J. J. J. & Koper, M. T. M. Tafel slope plot as a tool to analyze electrocatalytic reactions. ACS Energy Lett. 9, 1871–1879 (2024).

Article  PubMed  PubMed Central  Google Scholar 

van der Heijden, O., Park, S., Eggebeen, J. J. J. & Koper, M. T. M. Non-kinetic effects convolute activity and Tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts. Angew. Chem. Int. Ed. 62, e202216477 (2023).

Article  Google Scholar 

Tang, B. Y., Bisbey, R. P., Lodaya, K. M., Toh, W. L. & Surendranath, Y. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. 6, 339–350 (2023).

Article  CAS  Google Scholar 

Shah, A. H., Wan, C., Huang, Y. & Duan, X. Toward molecular level understandings of hydrogen evolution reaction on platinum surface. J. Phys. Chem. C 127, 12841–12848 (2023).

Article  CAS  Google Scholar 

Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).

Article  CAS  PubMed  Google Scholar 

Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018).

Article  CAS  Google Scholar 

Anderson, A. B. et al. Activation energies for oxygen reduction on platinum alloys: theory and experiment. J. Phys. Chem. B 109, 1198–1203 (2005).

Article  CAS  PubMed  Google Scholar 

Duan, Y. et al. Revealing the impact of electrolyte composition for Co-based water oxidation catalysts by the study of reaction kinetics parameters. ACS Catal. 10, 4160–4170 (2020).

Article 

Comments (0)

No login
gif