Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).
Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).
Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).
Article CAS PubMed Google Scholar
Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).
Article CAS PubMed Google Scholar
Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).
Article CAS PubMed Google Scholar
Kessinger, M. et al. Reorganization energies for interfacial proton-coupled electron transfer to a water oxidation catalyst. J. Am. Chem. Soc. 144, 20514–20524 (2022).
Article CAS PubMed Google Scholar
Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt–phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).
Article CAS PubMed Google Scholar
Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).
Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).
Article CAS PubMed Google Scholar
Lin, M. F. et al. Imaging the short-lived hydroxyl–hydronium pair in ionized liquid water. Science 374, 92–95 (2021).
Article CAS PubMed Google Scholar
Sivanantham, A., Ganesan, P., Vinu, A. & Shanmugam, S. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 10, 463–493 (2020).
Velasco-Velez, J.-J. et al. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).
Article CAS PubMed Google Scholar
Lin, Y. et al. Quantitative isotope measurements in heterogeneous photocatalysis and electrocatalysis. Energy Environ. Sci. 13, 2602–2617 (2020).
Yang, Y. et al. Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat. Chem. 15, 271–277 (2023).
Article CAS PubMed Google Scholar
Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).
Li, W. et al. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 10, 5074 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pasquini, C. et al. H/D isotope effects reveal factors controlling catalytic activity in Co-based oxides for water oxidation. J. Am. Chem. Soc. 141, 2938–2948 (2019).
Article CAS PubMed Google Scholar
Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).
Article CAS PubMed Google Scholar
Björketun, M. E., Tripkovic, V., Skúlason, E. & Rossmeisl, J. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catal. Today 202, 168–174 (2013).
Bockris, J. O. M. & Nagy, Z. Symmetry factor and transfer coefficient. A source of confusion in electrode kinetics. J. Chem. Educ. 50, 839 (1973).
Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem. 13, 537–549 (2009).
Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 11, 8848–8871 (2021).
Jackson, M. N. & Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 138, 3228–3234 (2016).
Article CAS PubMed Google Scholar
Goldsmith, Z. K., Lam, Y. C., Soudackov, A. V. & Hammes-Schiffer, S. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. J. Am. Chem. Soc. 141, 1084–1090 (2019).
Article CAS PubMed Google Scholar
Nishimoto, T., Shinagawa, T., Naito, T. & Takanabe, K. Microkinetic assessment of electrocatalytic oxygen evolution reaction over iridium oxide in unbuffered conditions. J. Catal. 391, 435–445 (2020).
Hao, Y. et al. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143, 1493–1502 (2021).
Article CAS PubMed Google Scholar
van Santen, R. A., Neurock, M. & Shetty, S. G. Reactivity theory of transition-metal surfaces: a Brønsted–Evans–Polanyi linear activation energy–free-energy analysis. Chem. Rev. 110, 2005–2048 (2010).
van der Heijden, O., Park, S., Vos, R. E., Eggebeen, J. J. J. & Koper, M. T. M. Tafel slope plot as a tool to analyze electrocatalytic reactions. ACS Energy Lett. 9, 1871–1879 (2024).
Article PubMed PubMed Central Google Scholar
van der Heijden, O., Park, S., Eggebeen, J. J. J. & Koper, M. T. M. Non-kinetic effects convolute activity and Tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts. Angew. Chem. Int. Ed. 62, e202216477 (2023).
Tang, B. Y., Bisbey, R. P., Lodaya, K. M., Toh, W. L. & Surendranath, Y. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. 6, 339–350 (2023).
Shah, A. H., Wan, C., Huang, Y. & Duan, X. Toward molecular level understandings of hydrogen evolution reaction on platinum surface. J. Phys. Chem. C 127, 12841–12848 (2023).
Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).
Article CAS PubMed Google Scholar
Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018).
Anderson, A. B. et al. Activation energies for oxygen reduction on platinum alloys: theory and experiment. J. Phys. Chem. B 109, 1198–1203 (2005).
Article CAS PubMed Google Scholar
Duan, Y. et al. Revealing the impact of electrolyte composition for Co-based water oxidation catalysts by the study of reaction kinetics parameters. ACS Catal. 10, 4160–4170 (2020).
Comments (0)