Huoa, T. et al. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm. Sin. B 14, 1030–1076 (2024).
Schmitt, H. L. et al. Regiodivergent ring-expansion of oxindoles to quinolinones. J. Am. Chem. Soc. 146, 4301–4308 (2024).
Article CAS PubMed PubMed Central Google Scholar
Kim, J., Kim, H. & Park, S. B. Privileged structures: efficient chemical ‘navigators’ toward unexplored biologically relevant chemical spaces. J. Am. Chem. Soc. 136, 14629–14638 (2014).
Article CAS PubMed Google Scholar
Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).
Article CAS PubMed Google Scholar
Zhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. Medicinal chemistry profiling of monocyclic 1,2-azaborines. ChemMedChem 12, 358–361 (2017).
Article CAS PubMed PubMed Central Google Scholar
Dewar, M. J. S. & Marr, P. A. A derivative of borazarene. J. Am. Chem. Soc. 84, 3782 (1962).
Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).
Article CAS PubMed Google Scholar
Liu, Z. & Marder, T. B. B–N versus C–C: how similar are they? Angew. Chem. Int. Ed. 47, 242–244 (2008).
Langdon, S. R., Ertl, P. & Brown, N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol. Inf. 29, 366–385 (2010).
Kazmi, M. Z. H., Schneider, O. M. & Hall, D. G. Expanding the role of boron in new drug chemotypes: properties, chemistry, pharmaceutical potential of hemiboronic naphthoids. J. Med. Chem. 66, 13768–13787 (2023).
Article CAS PubMed Google Scholar
Patani, G. A. & LaVoie, E. J. Bioisosterism: a rational approach in drug design. Chem. Rev. 96, 3147–3176 (1996).
Article CAS PubMed Google Scholar
Liu, L., Marwitz, A. J. V., Matthews, B. W. & Liu, S.-Y. Boron mimetics: 1,2-dihydro-1,2-azaborines bind inside a nonpolar cavity of T4 lysozyme. Angew. Chem. Int. Ed. 48, 6817–6819 (2009).
Das, B. C. et al. Boron-containing heterocycles as promising pharmacological agents. Bioorg. Med. Chem. 63, 116748 (2022).
Article CAS PubMed Google Scholar
Diaz, D. & Yudin, A. The versatility of boron in biological target engagement. Nat. Chem. 9, 731–742 (2017).
Article CAS PubMed Google Scholar
Chen, C., Du, C.-Z. & Wang, X.-Y. The rise of 1,4-BN-heteroarenes: synthesis, properties, and applications. Adv. Sci. 9, 2200707 (2022).
Yang, F., Zhu, M., Zhang, J. & Zhou, H. Synthesis of biologically active boron-containing compounds. Med. Chem. Commun. 9, 201–211 (2018).
Singh, A. & Kumar, R. Sustainable Passerini-tetrazole three component reaction (PT-3CR): selective synthesis of oxaborol-tetrazoles. Chem. Commun. 57, 9708–9711 (2021).
Su, W. et al. Copper-catalysed asymmetric hydroboration of alkenes with 1,2-benzazaborines to access chiral naphthalene isosteres. Nat. Chem. 16, 1312–1319 (2024).
Article CAS PubMed Google Scholar
Choi, S. & Dong, G. Rapid and modular access to multifunctionalized 1,2-azaborines via palladium/norbornene cooperative catalysis. J. Am. Chem. Soc. 146, 9512–9518 (2024).
Article CAS PubMed PubMed Central Google Scholar
Bosdet, M. J. D. & Piers, W. E. B–N as a C–C substitute in aromatic systems. Can. J. Chem. 87, 8–29 (2009).
Giustra, Z. X. & Liu, S.-Y. The state of the art in azaborine chemistry: new synthetic methods and applications. J. Am. Chem. Soc. 140, 1184–1194 (2018).
Article CAS PubMed PubMed Central Google Scholar
Stojanović, M. & Baranac-Stojanović, M. Mono BN-substituted analogues of naphthalene: a theoretical analysis of the effect of BN position on stability, aromaticity and frontier orbital energies. New J. Chem. 42, 12968–12976 (2018).
McConnell, C. R. & Liu, S.-Y. Late-stage functionalization of BN-heterocycles. Chem. Soc. Rev. 48, 3436–3453 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bhattacharjee, A., Davies, G. H. M., Saeednia, B., Wisniewski, S. R. & Molander, G. A. Selectivity in the elaboration of bicyclic borazarenes. Adv. Synth. Catal. 363, 2256–2273 (2021).
Article CAS PubMed Google Scholar
António, J. P. M., Russo, R., Carvalho, C. P., Cal, P. M. S. D. & Gois, P. M. P. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem. Soc. Rev. 48, 3513–3536 (2019).
Ashton, P. R. et al. A borazaaromatic analogue of isophthalic acid. J. Chem. Soc. Perkin Trans. 2 11, 2166–2173 (2001).
Rombouts, F. J. R., Tovar, F., Austin, N., Tresadern, G. & Trabanco, A. A. Benzazaborinines as novel bioisosteric replacements of naphthalene: propranolol as an example. J. Med. Chem. 58, 9287–9295 (2015).
Article CAS PubMed Google Scholar
Vlasceanu, A., Jessing, M. & Kilburn, J. P. BN/CC isosterism in borazaronaphthalenes towards phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. 23, 4453–4461 (2015).
Article CAS PubMed Google Scholar
Lee, H., Fischer, M., Shoichet, B. K. & Liu, S.-Y. Hydrogen bonding of 1,2-azaborines in the binding cavity of T4 lysozyme mutants: structures and thermodynamics. J. Am. Chem. Soc. 138, 12021–12024 (2016).
Article CAS PubMed PubMed Central Google Scholar
Campbell, P. G., Marwitz, A. J. V. & Liu, S.-Y. Recent advances in azaborine chemistry. Angew. Chem. Int. Ed. 51, 6074–6092 (2012).
Abengózar, A., García-García, P., Fernández-Rodríguez, M. A., Sucunza, D. & Vaquero, J. J. Chapter Four—recent developments in the chemistry of BN-aromatic hydrocarbons. Adv. Heterocycl. Chem. 135, 197–259 (2021).
Liu, X., Wu, P., Li, J. & Cui, C. Synthesis of 1,2-borazaronaphthalenes from imines by base-promoted borylation of C–H bond. J. Org. Chem. 80, 3737–3744 (2015).
Article CAS PubMed Google Scholar
Noda, H., Furutachi, M., Asada, Y., Shibasaki, M. & Kumagai, N. Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nat. Chem. 9, 571–577 (2017).
Article CAS PubMed Google Scholar
Hirva, P., Turhanen, P. & Timonen, J. M. Synthesis and theoretical studies of aromatic azaborines. Organics 3, 196–209 (2022).
Choi, J. H. & Lim, H. J. Mild one-pot Horner–Wadsworth–Emmons olefination and intramolecular N-arylation for the syntheses of indoles, all regio-isomeric azaindoles, and thienopyrroles. Org. Biomol. Chem. 13, 5131–5138 (2015).
Comments (0)