Evaluation of angiogenic, osteogenic, and antimicrobial potential of novel type X collagen-derived GBR membrane: an in vivo preliminary study

Radenković M, Alkildani S, Stoewe I, Bielenstein J, Sundag B, Bellmann O, Jung O, Najman S, Stojanović S, Barbeck M. Comparative in vivo analysis of the integration behavior and immune response of collagen-based dental barrier membranes for guided bone regeneration (GBR). Membranes (Basel). 2021;11(9):712. https://doi.org/10.3390/membranes11090712.PMID:34564529;PMCID:PMC8467533.

Article  PubMed  Google Scholar 

Zhang M, Zhou Z, Yun J, Liu R, Li J, Chen Y, et al. Effect of different membranes on vertical bone regeneration: a systematic review and network meta-analysis. Biomed Res Int. 2022. https://doi.org/10.1155/2022/7742687.

Article  PubMed  PubMed Central  Google Scholar 

Melcher MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28(7):703–21.

Google Scholar 

Laustriat S, Geiss S, Becmeur F, Bientz J, Marcellin L, Sauvage P. Medical history of Teflon. Eur Urol. 1990;17(4):301–3.

CAS  PubMed  Google Scholar 

Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996;27(6):401–8.

CAS  PubMed  Google Scholar 

Polimeni G, Koo K, Qahash M, Xiropaidis AV, Albandar JM, Wikesjo UME. Prognostic factors for alveolar ¨ regeneration: effect of a space-providing biomaterial on guided tissue regeneration. J Clin Periodontol. 2004;31(9):725–9.

PubMed  Google Scholar 

Sbricoli L, Guazzo R, Annunziata M, Gobbato L, Bressan E, Nastri L. Selection of collagen membranes for bone regeneration: a literature review. Materials. 2020. https://doi.org/10.3390/ma13030786.

Article  PubMed  PubMed Central  Google Scholar 

Sheikh Z, Khan AS, Roohpour N, Glogauer M, Rehman I. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Mater Sci Eng. 2016;68(1):267–75.

CAS  Google Scholar 

Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–37. https://doi.org/10.1111/eos.12364.

Article  PubMed  PubMed Central  Google Scholar 

Tolstunov L, Hamrick JFE, Broumand V, Shilo D, Rachmiel A. Bone augmentation techniques for horizontal and vertical alveolar ridge deficiency in oral implantology. Oral Maxillofac Surg Clin N Am. 2019;31(2):163–91. https://doi.org/10.1016/j.coms.2019.01.005.

Article  Google Scholar 

Sheikh Z, Qureshi J, Alshahrani AM, Nassar H, Ikeda Y, Glogauer M, et al. Collagen-based barrier membranes for periodontal guided bone regeneration applications. Odontology. 2017;105(1):1–12. https://doi.org/10.1007/s10266-016-0267-0.

Article  CAS  PubMed  Google Scholar 

Behzadi S, Luther GA, Harris MB, Farokhzad OC, Mahmoudi M. Nanomedicine for safe healing of bone trauma: opportunities and challenges. Biomaterials. 2017;146:168–82. https://doi.org/10.1016/j.biomaterials.2017.09.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen LK, Koch J, Aalbaek B, Moodley A, Bjarnsholt T, Kragh KN, et al. Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir. APMIS. 2017;125(1):38–45. https://doi.org/10.1111/apm.12597.

Article  CAS  PubMed  Google Scholar 

Costa Pereira L, Almeida Barros MCF, Neves Novellino Alves AT, Figueiredo Brito Resende R, Pinheiro Guedes Uzeda MJ, Granjeiro JM, Seabra Louro R, & Diuana Calasans-Maia M. (2019). In vitro physico-chemical characterization and standardized in vivo evaluation of biocompatibility of a new synthetic membrane for guided bone Regeneration. Materials. https://doi.org/10.1111/iej.14274

Abdelaziz D, Hefnawy A, Al-Wakeel E, El-Fallal A. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res. 2021;28:51–62.

CAS  PubMed  Google Scholar 

Hwang JW, Kim S, Kim SW, Lee JH. Effect of extracellular matrix membrane on bone formation in a rabbit tibial defect model. Biomed Res Int. 2016. https://doi.org/10.1155/2016/6715295.

Article  PubMed  PubMed Central  Google Scholar 

Zubery Y, Goldlust A, Alves A, Nir E. Ossification of a novel cross-linked porcine collagen barrier in guided bone regeneration in dogs. J Periodontol. 2007;78(1):112–21.

PubMed  Google Scholar 

Kim O, Choi J, Kim B, Seo D. Long-term success rates of implants with guided bone regeneration or bone grafting. Clin Oral Impl Res. 2020. https://doi.org/10.1111/clr.171_13644.

Article  Google Scholar 

Ali F, Khan SB, Shaheen N, Zhu YZ. Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. Carbohydr Polym. 2021. https://doi.org/10.1016/j.carbpol.2021.117681.

Article  PubMed  Google Scholar 

Cao YB, Liu C, Pan WL, Tu Y, Li CJ, Hua CG. Research progress on the modification of guided bone regeneration membranes. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37(3):325–9. https://doi.org/10.7518/hxkq.2019.03.019.

Article  PubMed  Google Scholar 

Saarani NN, Jamuna-Thevi K, Shahab N, Hermawan H, Saidin S. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria. Dent Mat J. 2017;36(3):260–5. https://doi.org/10.4012/dmj.2016-177.

Article  CAS  Google Scholar 

Munakata M, Kataoka Y, Yamaguchi K, Sanda M. Risk factors for early implant failure and selection of bone grafting materials for various bone augmentation procedures: a narrative review. Bioengineering. 2024;11(2):192.

PubMed  PubMed Central  Google Scholar 

Law AY, Wong CK. Stanniocalcin-1 and-2 promote angiogenic sprouting in HUVECs via VEGF/VEGFR2 and angiopoietin signaling pathways. Mol Cell Endocrinol. 2013;374(1–2):73–81.

CAS  PubMed  Google Scholar 

Bessashia W, Berredjem Y, Hattab Z, Bououdina M. Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies. Environ Res. 2020;1(186): 109484.

Google Scholar 

Sah MK, Rath SN. Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater Sci Eng, C. 2016;1(67):807–21.

Google Scholar 

Li J, Zhai D, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Wu C. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;1(36):254–66.

Google Scholar 

Seo CH, Furukawa K, Montagne K, Jeong H, Ushida T. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials. 2011;32(36):9568–75.

CAS  PubMed  Google Scholar 

Valarmathi MT, Davis JM, Yost MJ, Goodwin RL, Potts JD. A three-dimensional model of vasculogenesis. Biomaterials. 2009;30(6):1098–112.

CAS  PubMed  Google Scholar 

Arias JI, Gonzalez A, Fernandez MS, Gonzalez C, Saez D, Arias JL. Eggshell membrane as a biodegradable bone regeneration inhibitor. J Tissue Eng Regen Med. 2008;2(4):228–33. https://doi.org/10.1002/term.87.

Article  CAS  PubMed  Google Scholar 

Preda N, Costas A, Beregoi M, Apostol N, Kuncser A, Curutiu C, Iordache F, Enculescu I. Functionalization of eggshell membranes with CuO-ZnO based p-n junctions for visible light induced antibacterial activity against Escherichia coli. Sci Rep. 2020;10(1):20960. https://doi.org/10.1038/s41598-020-78005-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Chen S, Luo P, Deng S, Shan Z, Fang J, Liu X, Xie J, Liu R, Wu S, Wu X, Chen Z, Yeung KWK, Liu Q, Chen Z. Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite. Acta Biomater. 2022;15(143):159–72. https://doi.org/10.1016/j.actbio.2022.02.004. (Epub 2022 Feb 9 PMID: 35149241).

Article  CAS  Google Scholar 

Toledano M, Vallecillo-Rivas M, Osorio MT, Muñoz-Soto E, Toledano-Osorio M, Vallecillo C, Toledano R, Lynch CD, Serrera-Figallo MA, Osorio R. Zn-containing membranes for guided bone regeneration in dentistry. Polymers (Basel). 2021;13(11):1797. https://doi.org/10.3390/polym13111797.PMID:34072433;PMCID:PMC8199215.

Article  CAS  PubMed  Google Scholar 

Aprile P, Letourneur D, Simon-Yarza T. Membranes for guided bone regeneration: a road from bench to bedside. Adv Healthcare Mater. 2020;9(19):2000707.

CAS  Google Scholar 

Plum LM, Rink L, Haase H. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health. 2010;7(4):1342–65.

CAS  PubMed  PubMed Central  Google Scholar 

Toledano M, Vallecillo-Rivas M, Osorio MT, Muñoz-Soto E, Toledano-Osorio M, Vallecillo C, Toledano R, Lynch CD, Serrera-Figallo MA, Osorio R. Zn-containing membranes for guided bone regeneration in den

Comments (0)

No login
gif