Bioactive restorative materials in dentistry: a comprehensive review of mechanisms, clinical applications, and future directions

Ladino L, Bernal A, Calderón D, Cortés D. Bioactive materials in restorative dentistry: a literature review. SVOA Dentistry. 2021.

Mocquot C, Attik N, Pradelle-Plasse N, Grosgogeat B, Colon P. Bioactivity assessment of bioactive glasses for dental applications: a critical review. Dent Mater. 2020;36(9):1116–43.

CAS  PubMed  Google Scholar 

Melo MA, Collares F, Sauro S. Editorial: Developing Bioactive Materials for Dental Applications. Frontiers in Materials. 2021;8.

Pey A. Recent advances in bioactive dental materials: a paradigm shift in restorative dentistry. Dental. 2024;6:15.

Google Scholar 

Nicholson J, Sidhu S, Czarnecka B. Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review. Heliyon. 2024;10: e25239.

CAS  PubMed  PubMed Central  Google Scholar 

Price R, Roulet JF. The value of consensus conferences: peer review by 50 key opinion leaders! Stomatol Educ J. 2018;5:202–4.

Google Scholar 

Darvell BW. Bioactivity—symphony or cacophony? A personal view of a tangled field. Prosthesis. 2021;3(1):75–84.

Google Scholar 

Ferracane JL, Sidhu SK, Melo MAS, Yeo I-SL, Diogenes A, Darvell BW. Bioactive dental materials: developing, promising, confusing. JADA Found Sci. 2023;2: 100022.

Google Scholar 

Darvell BW, Smith AJ. Inert to bioactive–a multidimensional spectrum. Dent Mater. 2022;38(1):2–6.

CAS  PubMed  Google Scholar 

Schmalz G, Hickel R, Price RB, Platt JA. Bioactivity of dental restorative materials: FDI policy statement. Int Dent J. 2023;73(1):21–7.

PubMed  Google Scholar 

Bakry AS, Marghalani HY, Amin OA, Tagami J. The effect of a bioglass paste on enamel exposed to erosive challenge. J Dent. 2014;42(11):1458–63.

CAS  PubMed  Google Scholar 

Hamdy T. Bioactivity: a new buzz in dental materials. 2018.

Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J. CO2 laser improves 45S5 bioglass interaction with dentin. J Dent Res. 2011;90(2):246–50.

CAS  PubMed  Google Scholar 

Bakry AS, Takahashi H, Otsuki M, Tagami J. The durability of phosphoric acid promoted bioglass-dentin interaction layer. Dent Mater. 2013;29(4):357–64.

CAS  PubMed  Google Scholar 

Kenawy E-R, Kamoun EA, Ghaly ZS, Shokr A-bM, El-Moslamy SH, Abou-Elyazed AS. Copper and fluorine-MOFs loaded-electrospun PVA/gelatin nanofibers for enhancing the antimicrobial activity of topical wound dressings: MOFs synthesis and spinning conditions optimization. Mater Chem Phys. 2025;332: 130303.

CAS  Google Scholar 

Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

CAS  Google Scholar 

Brauer DS. Bioactive glasses—structure and properties. Angew Chem Int Ed. 2015;54(14):4160–81.

CAS  Google Scholar 

Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465–85.

CAS  PubMed  Google Scholar 

Cuppini M, Garcia I, de Souza V, Zatta K, Visioli F, Leitune V, et al. Ionic liquid-loaded microcapsules doped into dental resin infiltrants. Bioactive Mater. 2021;6:2667–75.

CAS  Google Scholar 

Nicholson JW, Czarnecka B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent Mater. 2008;24(12):1702–8.

CAS  PubMed  Google Scholar 

Elzawawy N, El-Safty S, Kenawy ER, Salem S, Ali S, Mahmoud Y. Exploring the biomedical potential of a novel modified glass ionomer cement against the pandrug-resistant oral pathogen Candida albicans SYN-01. J Oral Microbiol. 2023;15:2195741.

Google Scholar 

Ezzat D, Azab A, Kamel IS, Abdelmonem M, Ibrahim MA, Ayad A, et al. Phytomedicine and green nanotechnology: enhancing glass ionomer cements for sustainable dental restorations: a comprehensive review. Beni-Suef Univ J Basic Appl Sci. 2025;14(1):48.

Google Scholar 

Zhao X. Introduction to bioactive materials in medicine. Bioactive Materials in Medicine. Amsterdam: Elsevier; 2011. p. 1–13.

Google Scholar 

Hench LL, Andersson Ö. Bioactive glasses. An introduction to bioceramics. p. 41–62.

Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117–41.

Google Scholar 

Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17(11):967–78.

CAS  PubMed  Google Scholar 

Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive glass applications: a literature review of human clinical trials. Materials. 2021;14(18):5440.

CAS  PubMed  PubMed Central  Google Scholar 

Ogino M, Hench LL. Formation of calcium phosphate films on silicate glasses. J Non-Cryst Solids. 1980;38–39:673–8.

Google Scholar 

Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014;102(1):254–74.

PubMed  Google Scholar 

Bachar A, Catteaux R, Duée C, Désanglois F, Lebecq I, Mercier C, Follet-Houttemane C. Chapter 3—synthesis and characterization of doped bioactive glasses. In: Kaur G, editor. Biomedical, therapeutic and clinical applications of bioactive glasses. Woodhead Publishing; 2019. p. 69–123.

Google Scholar 

Seo JH, Ryu HS, Park K, Hong KS, Kim H, Lee JH, et al. Characterization of bioactive glass-ceramics prepared by sintering mixed glass powders of Cerabone® AW type glass/CaO-SiO2-B2O3 glass. Key Eng Mater. 2004;254:147–50.

Google Scholar 

Nakamura J, Sugawara-Narutaki A, Ohtsuki C. Bioactive ceramics: past and future. bioceramics: from macro to nanoscale 2020. p. 377–88.

Dorozhkin SV. Surface reactions of apatite dissolution. J Colloid Interface Sci. 1997;191(2):489–97.

CAS  PubMed  Google Scholar 

Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017;5:17056.

CAS  PubMed  PubMed Central  Google Scholar 

Brown W, Chow L, editors. A new calcium-phosphate setting cement. 62, 672. International and American associations of dental research (Ref Type: Conference Proceeding); 1983.

Ginebra MP, Fernández E, De Maeyer EAP, Verbeeck RMH, Boltong MG, Ginebra J, et al. Setting reaction and hardening of an apatitic calcium phosphate cement. J Dent Res. 1997;76(4):905–12.

CAS  PubMed  Google Scholar 

Friedman CD, Costantino PD, Takagi S, Chow LC. Bonesource(TM) hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res. 1998;43(4):428–32.

CAS  PubMed  Google Scholar 

Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267(5205):1796–9.

CAS  PubMed  Google Scholar 

Kamitakahara M, Saito T, Ioku K. Synthesis and in vitro evaluation of hydroxyapatite with controlled morphology. J Phys Conf Ser. 2012;339:1–4.

Google Scholar 

Baino F, Yamaguchi S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: review and challenges. Biomimetics. 2020;5(4): 57.

CAS  PubMed  PubMed Central  Google Scholar 

Shin K, Acri T, Geary S, Salem AK. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng Part A. 2017;23(19–20):1169–80.

CAS  PubMed  PubMed Central  Google Scholar 

Győri E, Fábián I, Lázár I. Effect of the chemical composition of simulated body fluids on aerogel-based bioactive composites. J Compos Sci. 2017;1(2):15.

Google Scholar 

Gligorijević B, Vilotijević M. Simulated body fluids prepared with natural buffers and system for active pH regulation. Iran J Chem Chem Eng Int Eng Ed. 2021. https://doi.org/10.30492/ijcce.2021.530070.4823.

Google Scholar 

Garoushi S, Peltola T, Siekkinen M, Hupa L, Vallittu PK, Lassila L, Säilynoja E. Retention of strength and ion release of some restorative materials. Odontology. 2024. https://doi.org/10.1007/s10266-024-01010-3.

PubMed  PubMed Central  Google Scholar 

Edanami N, Takenaka S, Ibn Belal RS, Yoshiba K, Takahara S, Yoshiba N, et al. In vivo assessment of the apatite-forming ability of new-generation hydraulic calcium silicate cements using a rat subcutaneous implantation model. J Funct Biomater. 2023. https://doi.org/10.3390/jfb14040213.

PubMed  PubMed Central  Google Scholar 

Choi JW, Han AR, Yang SY. Ion release and apatite formation of resin based pit and fissure sealants containing 45S5 bioactive glass. Polymers (Basel). 2024. https://doi.org/10.3390/polym16131855.

PubMed  PubMed Central  Google Scholar 

Mehta D, George S, Singh A. Assessment of different synthesis route of hydroxyapatite and study of its biocompatibility in synthetic body fluids. Int J ChemTech Res. 2016;9:267–76.

CAS  Google Scholar 

Unosson E, Feldt D, Xia W, Engqvist H. Amorphous calcium magnesium fluoride phosphate—novel material for mineralization in preventive dentistry. Appl Sci. 2023;13(10):6298.

CAS  Google Scholar 

Xu J, Shi H, Luo J, Yao H, Wang P, Li Z, Wei J. Advanced materials for enamel remineralization. Front Bioeng Biotechnol. 2022;10: 985881.

PubMed  PubMed Central 

Comments (0)

No login
gif