Abou Nader N, Levasseur A, Zhang X, Boerboom D, Nagano MC, Boyer A (2019) Yes-associated protein expression in germ cells is dispensable for spermatogenesis in mice. Genesis 57:e23330. https://doi.org/10.1002/dvg.23330
Abou Nader N, Ménard A, Levasseur A, St-Jean G, Boerboom D, Zamberlam G, Boyer A (2022) Targeted disruption of Lats1 and Lats2 in mice impairs testis development and alters somatic cell fate. Int J Mol Sci. https://doi.org/10.3390/ijms232113585
Article PubMed PubMed Central Google Scholar
Bevers TB, Anderson BO, Bonaccio E, Buys S, Daly MB, Dempsey PJ, Farrar WB, Fleming I, Garber JE, Harris RE et al (2009) NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J Natl Compr Canc Netw 7:1060–1096. https://doi.org/10.6004/jnccn.2009.0070
Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Koren S, De Silva D, Mertz KD, Kaup D, Varga Z et al (2017) The hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature 541:541–545. https://doi.org/10.1038/nature20829
Article CAS PubMed PubMed Central Google Scholar
Brodowska K, Al-Moujahed A, Marmalidou A, Meyer Zu Horste M, Cichy J, Miller JW, Gragoudas E, Vavvas DG (2014) The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell growth in vitro without light activation. Exp Eye Res 124:67–73. https://doi.org/10.1016/j.exer.2014.04.011
Article CAS PubMed PubMed Central Google Scholar
Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM (2017) Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav 176:139–148. https://doi.org/10.1016/j.physbeh.2017.03.040
Article CAS PubMed PubMed Central Google Scholar
Cha YJ, Bae SJ, Kim D, Ahn SG, Jeong J, Koo JS, Yoo TK, Park WC, Lee A, Yoon CI (2021) High nuclear expression of Yes-associated protein 1 correlates with metastasis in patients with breast cancer. Front Oncol 11:609743. https://doi.org/10.3389/fonc.2021.609743
Article CAS PubMed PubMed Central Google Scholar
Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF, Chang NS (2019) Ww domain-containing proteins YAP and TAZ in the Hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. Front Oncol 9:60. https://doi.org/10.3389/fonc.2019.00060
Article PubMed PubMed Central Google Scholar
Chen M, Zhong L, Yao SF, Zhao Y, Liu L, Li LW, Xu T, Gan LG, Xiao CL, Shan ZL, Liu BZ (2017) Verteporfin inhibits cell proliferation and induces apoptosis in human leukemia NB4 cells without light activation. Int J Med Sci 14:1031–1039. https://doi.org/10.7150/ijms.19682
Article CAS PubMed PubMed Central Google Scholar
Cheng H, Zhang Z, Rodriguez-Barrueco R, Borczuk A, Liu H, Yu J, Silva JM, Cheng SK, Perez-Soler R, Halmos B (2016) Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 7:28976–28988. https://doi.org/10.18632/oncotarget.6721
Coto-Llerena M, Tosti N, Taha-Mehlitz S, Kancherla V, Paradiso V, Gallon J, Bianco G, Garofoli A, Ghosh S, Tang F et al (2021) Transcriptional enhancer factor domain family member 4 exerts an oncogenic role in hepatocellular carcinoma by Hippo-independent regulation of heat shock protein 70 family members. Hepatol Commun 5:661–674. https://doi.org/10.1002/hep4.1656
Article CAS PubMed PubMed Central Google Scholar
Dai M, Yan G, Wang N, Daliah G (2021) In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun 12:3055. https://doi.org/10.1038/s41467-021-23316-4
Article CAS PubMed PubMed Central Google Scholar
Eckert D, Nettersheim D, Heukamp LC, Kitazawa S, Biermann K, Schorle H (2008) TCam-2 but not JKT-1 cells resemble seminoma in cell culture. Cell Tissue Res 331:529–538. https://doi.org/10.1007/s00441-007-0527-y
Article CAS PubMed Google Scholar
Feng J, Gou J, Jia J, Yi T, Cui T, Li Z (2016) Verteporfin, a suppressor of YAP-TEAD complex, presents promising antitumor properties on ovarian cancer. OncoTargets Ther 9:5371–5381. https://doi.org/10.2147/ott.S109979
Fu J, McGrath NA, Lee J, Wang X, Brar G, Xie C (2022) Verteporfin synergizes the efficacy of anti-PD-1 in cholangiocarcinoma. Hepatobiliary & Pancreatic Diseases Int HBPD INT 21:485–492. https://doi.org/10.1016/j.hbpd.2022.03.006
Guo Y, Luo J, Zou H, Liu C, Deng L, Li P (2022) Context-dependent transcriptional regulations of YAP/TAZ in cancer. Cancer Lett 527:164–173. https://doi.org/10.1016/j.canlet.2021.12.019
Article CAS PubMed Google Scholar
Han H, Yang B, Nakaoka HJ, Yang J, Zhao Y, Le Nguyen K, Bishara AT, Mandalia TK, Wang W (2018) Hippo signaling dysfunction induces cancer cell addiction to YAP. Oncogene 37:6414–6424. https://doi.org/10.1038/s41388-018-0419-5
Article CAS PubMed PubMed Central Google Scholar
Hasegawa T, Sugihara T, Hoshino Y, Tarumoto R, Matsuki Y, Kanda T, Takata T, Nagahara T, Matono T, Isomoto H (2021) Photosensitizer verteporfin inhibits the growth of YAP- and TAZ-dominant gastric cancer cells by suppressing the anti-apoptotic protein survivin in a light-independent manner. Oncol Lett 22:703. https://doi.org/10.3892/ol.2021.12964
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Ahmad US, Rehman A, Uttagomol J, Wan H (2022) Yap inhibition by verteporfin causes downregulation of desmosomal genes and proteins leading to the disintegration of intercellular junctions. Life (Basel). https://doi.org/10.3390/life12060792
Article PubMed PubMed Central Google Scholar
Jacobs LA, Vaughn DJ (2012) Hypogonadism and infertility in testicular cancer survivors. J Nat Comprehens Cancer Network : JNCCN 10:558–563. https://doi.org/10.6004/jnccn.2012.0053
Jeong SB, Das R, Kim DH, Lee S, Oh HI, Jo S, Lee Y, Kim J, Park S, Choi DK et al (2022) Anticancer effect of verteporfin on non-small cell lung cancer via downregulation of ANO1. Biomed Pharmacother 153:113373. https://doi.org/10.1016/j.biopha.2022.113373
Article CAS PubMed Google Scholar
de Jong J, Stoop H, Gillis AJ, Hersmus R, van Gurp RJ, van de Geijn GJ, van Drunen E, Beverloo HB, Schneider DT, Sherlock JK et al (2008) Further characterization of the first seminoma cell line TCam-2. Genes Chromosomes Cancer 47:185–196. https://doi.org/10.1002/gcc.20520
Article CAS PubMed Google Scholar
Kjærner-Semb E, Ayllon F, Kleppe L, Sørhus E, Skaftnesmo K, Furmanek T, Segafredo FT, Thorsen A, Fjelldal PG, Hansen T et al (2018) Vgll3 and the Hippo pathway are regulated in Sertoli cells upon entry and during puberty in Atlantic salmon testis. Sci Rep 8:1912. https://doi.org/10.1038/s41598-018-20308-1
Article CAS PubMed PubMed Central Google Scholar
Levasseur A, Paquet M, Boerboom D, Boyer A (2017) Yes-associated protein and WW-containing transcription regulator 1 regulate the expression of sex-determining genes in Sertoli cells, but their inactivation does not cause sex reversal. Biol Reprod 97:162–175. https://doi.org/10.1093/biolre/iox057
Liu X, Quan J, Shen Z, Zhang Z, Chen Z, Li L, Li X, Hu G, Deng X (2022) Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int 22:205. https://doi.org/10.1186/s12935-022-02623-w
Article CAS PubMed PubMed Central Google Scholar
Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. https://doi.org/10.1101/gad.192856.112
Comments (0)