Aparicio L, Crowley L, Christin JR et al (2025) Meta-analyses of mouse and human prostate single-cell transcriptomes reveal widespread epithelial plasticity in tissue regression, regeneration, and cancer. Genome Med 17(1):5. https://doi.org/10.1186/s13073-025-01432-w
Article CAS PubMed PubMed Central Google Scholar
Barreiros L, Queiroz JF, Magalhães LM et al (2016) Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices - a review. Microchem J 126:243–262. https://doi.org/10.1016/j.microc.2015.12.003
Bertram MG, Gore AC, Tyler CR, Brodin T (2022) Endocrine-disrupting chemicals. Curr Biol 32(13):R727–R730. https://doi.org/10.1016/j.cub.2022.05.063
Bueno ESB, Neto-Vieira DC, Rodrigues A et al (2024) Assessment of prostate tissue remodeling in rats exposed to bisphenol A and the phytoestrogens genistein and indole-3-carbinol during the perinatal period. Cienc Rural 54(8):e20230205. https://doi.org/10.1590/0103-8478cr20230205
Buskin A, Singh P, Lorenz O et al (2021) A review of prostate organogenesis and a role for iPSC-derived prostate organoids to study prostate development and disease. Int J Mol Sci 22:13097. https://doi.org/10.3390/ijms222313097
Article CAS PubMed PubMed Central Google Scholar
Cândido E, Fávaro WJ, Montico F et al (2012) Senescence and steroid hormone receptor reactivities in accessory sex glands of elderly rats (Sprague-Dawley) following exogenous hormonal therapy. Tissue Cell 44(4):227–237. https://doi.org/10.1016/j.tice.2012.03.007
Article CAS PubMed Google Scholar
Cheal ML (1986) The gerbil: a unique model for research on aging. Exp Aging Res 12(1):3–21. https://doi.org/10.1080/03610738608259430
Article CAS PubMed Google Scholar
Chen P, Li B, Ou-Yang L (2022) Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 13:839005. https://doi.org/10.3389/fendo.2022.839005
Crowley L, Shen MM (2022) Heterogeneity and complexity of the prostate epithelium: new findings from single-cell RNA sequencing studies. Cancer Lett 525:108–114. https://doi.org/10.1016/j.canlet.2021.10.035
Article CAS PubMed Google Scholar
Dapson RW, Fagan C, Kiernan JA, Wickersham TW (2011) Certification procedures for sirius red F3B (CI 35780, direct red 80). Biotech Histochem 86(3):133–139. https://doi.org/10.3109/10520295.2011.570277
Article CAS PubMed Google Scholar
De Souza VG, Bandeira LB, Souza NCSE et al (2022) Prenatal and pubertal exposure to 17α-ethinylestradiol disrupts folliculogenesis and promotes morphophysiological changes in ovaries of old gerbils (Meriones unguiculatus). J Dev Orig Health Dis 13(1):49–60. https://doi.org/10.1017/S2040174421000040
Article CAS PubMed Google Scholar
Desbiolles F, Malleret L, Tiliacos C, Wong-Wah-Chung P, Laffont-Schwob I (2018) Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Sci Total Environ 15(639):1334–1348. https://doi.org/10.1016/j.scitotenv.2018.04.351
Falleiros-Júnior LR, Perez AP, Taboga SR et al (2016) Neonatal exposure to ethinylestradiol increases ventral prostate growth and promotes epithelial hyperplasia and inflammation in adult male gerbils. Int J Exp Pathol 97(5):380–388. https://doi.org/10.1111/iep.12208
Article CAS PubMed PubMed Central Google Scholar
Fleury FG, Guimarães LRF, Rezende EB et al (2021) Prenatal and pubertal exposure to 17α‐ethinylestradiol cause morphological changes in the prostate of old gerbils. Cell Biol Int 45(10):2074–2085. https://doi.org/10.1002/cbin.11656
Article CAS PubMed Google Scholar
Fochi RA, Perez APS, Bianchi CV et al (2008) Hormonal oscillations during the estrous cycle influence the morphophysiology of the gerbil (Meriones unguiculatus) female prostate (skene paraurethral glands). Biol Reprod 79(6):1084–1091. https://doi.org/10.1095/biolreprod.108.070540
Article CAS PubMed Google Scholar
Góes RM, Zanetoni C, Tomiosso TC et al (2007) Surgical and chemical castration induce differential histological response in prostate lobes of Mongolian gerbil. Micron 38(3):231–236. https://doi.org/10.1016/j.micron.2006.06.016
Article CAS PubMed Google Scholar
He H, Lin Y, Yang X et al (2022) The photodegradation of 17 alpha-ethinylestradiol in water containing iron and dissolved organic matter. Sci Total Environ 25(814):152516. https://doi.org/10.1016/j.scitotenv.2021.152516
Ittmann M (2018) Anatomy and Histology of the Human and Murine Prostate.Cold Spring Harb Perspect Med 8(5):a030346. https://doi.org/10.1101/cshperspect.a030346
Karamanos NK, Theocharis AD, Neill T et al (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 289(15):4243–4285. https://doi.org/10.1111/febs.15776
Meeks JJ, Schaeffer EM (2011) Genetic regulation of prostate development. J Androl 32(3):210–217. https://doi.org/10.2164/jandrol.110.011577
Article CAS PubMed Google Scholar
Montano M, Bushman W (2017) Morphoregulatory pathways in prostate ductal development. Dev Dyn 246(2):89–99. https://doi.org/10.1002/dvdy.24478
Nishino N, Totsukawa K (1996) Study on the estrous cycle in the Mongolian gerbil (Meriones unguiculatus). Exp Anim 45(3):283–288. https://doi.org/10.1538/expanim.45.283. (PMID: 8840149)
Article CAS PubMed Google Scholar
Nowak RM (1991) Walker’s Mammals of the World, 5th edn. The Johns Hopkins University Press, Baltimore (MD)
Nobre CR, Moreno BB, Alves AV et al (2024) Microplastic-mediated toxicity of ethinylestradiol to tropical estuarine invertebrates: biochemical and cellular impacts. Toxics 12(5):319. https://doi.org/10.3390/toxics12050319
Article CAS PubMed PubMed Central Google Scholar
Olson AW, Le V, Wang J (2021) Stromal androgen and hedgehog signaling regulates stem cell niches in pubertal prostate development. Development 148(19):dev199738. https://doi.org/10.1242/dev.199738
Article CAS PubMed PubMed Central Google Scholar
Pan J, Liu P, Yu X, Zhang Z, Liu J (2024) The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 14:1324993. https://doi.org/10.3389/fendo.2023.1324993
Pegorin de Campos SG, Zanetoni C, Góes RM, Taboga SR (2006) Biological behavior of the gerbil ventral prostate in three phases of postnatal development. Anat Rec A Discov Mol Cell Evol Biol 288(7):723–733. https://doi.org/10.1002/ar.a.20347
Perez AP, Biancardi MF, dos Santos FCA et al (2011) Exposure to ethinylestradiol during prenatal development and postnatal supplementation with testosterone causes morphophysiological alterations in the prostate of male and female adult gerbils. Int J Exp Pathol 92(2):121–130. https://doi.org/10.1111/j.1365-2613.2010.00756.x
Article CAS PubMed PubMed Central Google Scholar
Perez AP, Biancardi MF, Vilamaior OS et al (2012) Microscopic comparative study of the exposure effects of testosterone cypionate and ethinylestradiol during prenatal life on the prostatic tissue of adult gerbils. Microsc Res Tech 75(8):1084–1092. https://doi.org/10.1002/jemt.22034
Article CAS PubMed Google Scholar
Perez AP, Biancardi MF, Caires CRS et al (2016) Prenatal exposure to ethinylestradiol alters the morphologic patterns and increases the predisposition for prostatic lesions in male and female gerbils during ageing. Int J Exp Pathol 97(1):5–17. https://doi.org/10.1002/jemt.22034
Comments (0)