Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S, Tavakkoly-Bazzaz J (2017) New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 24(6):233–243. https://doi.org/10.1038/cgt.2017.16
Article CAS PubMed Google Scholar
Lee IH, Lee SJ, Kim J, Lee YH, Chong GO, Kim JM, Lee J, Lee NY, Park SY, Hong DG, Chae YS (2024) Exploring the effect of BRCA1/2 status on chemotherapy-induced hematologic toxicity in patients with ovarian cancer. Cancer Chemother Pharmacol 94(1):103–108. https://doi.org/10.1007/s00280-024-04670-8
Article CAS PubMed Google Scholar
Boccia R, Glaspy J, Crawford J, Aapro M (2022) Chemotherapy-Induced neutropenia and febrile neutropenia in the US: A beast of burden that needs to be tamed? Oncologist 27(8):625–636. https://doi.org/10.1093/oncolo/oyac074
Article PubMed PubMed Central Google Scholar
Epstein RS, Aapro MS, Basu Roy UK, Salimi T, Krenitsky J, Leone-Perkins ML, Girman C, Schlusser C, Crawford J (2020) Patient burden and real-world management of chemotherapy-induced myelosuppression: results from an online survey of patients with solid tumors. Adv Ther 37(8):3606–3618. https://doi.org/10.1007/s12325-020-01419-6
Article PubMed PubMed Central Google Scholar
Wang X, Wang Z, Wu H, Jia W, Teng L, Song J, Yang X, Wang D (2018) Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress. Int J Biol Macromol 120(Pt A):736–744
Liu C, Zhang F, Hu J, Gao W, Zhang M (2021) A Mini review on pH-sensitive photoluminescence in carbon nanodots. Front Chem 8:605028. https://doi.org/10.3389/fchem.2020.605028
Article CAS PubMed PubMed Central Google Scholar
Khan WU, Qin L, Alam A, Zhou P, Peng Y, Wang Y (2021) Water-soluble green-emitting carbon nanodots with enhanced thermal stability for biological applications. Nanoscale 13(7):4301–4307. https://doi.org/10.1039/d0nr09131f
Chen L, Song M, Guan J, Shu Y, Jin D, Fan G, Xu Q, Hu XY (2021) A highly-specific photoelectrochemical platform based on carbon nanodots and polymers functionalized organic-inorganic perovskite for cholesterol sensing. Talanta 225:122050
Khan S, Dunphy A, Anike MS, Belperain S, Patel K, Chiu NHL, Jia Z (2021) Recent advances in carbon nanodots: A promising nanomaterial for biomedical applications. Int J Mol Sci 22(13):6786. https://doi.org/10.3390/ijms22136786
Article CAS PubMed PubMed Central Google Scholar
Azami M, Wei J, Valizadehderakhshan M, Jayapalan A, Ayodele OO, Nowlin K (2023) Effect of doping heteroatoms on the optical behaviors and radical scavenging properties of carbon nanodots. J Phys Chem C Nanomater Interfaces 127(15):7360–7370. https://doi.org/10.1021/acs.jpcc.3c00953
Article CAS PubMed PubMed Central Google Scholar
Zhao W, Huang C, Guo X, Zhu Y, Li Y, Duan Y, Gao J (2025) A fluorescence biosensor based on carbon quantum dots prepared from pomegranate peel and T-Hg2+-T Mismatch for Hg2+ detection. J Fluoresc 35(3):1651–1659. https://doi.org/10.1007/s10895-024-03645-5
Mohammadi A, Haghnazari N, Karami C (2023) Green synthesized fluorescent carbon dots from oak apple for detection of Efavirenz. J Mater Sci Mater Electron 34(6):517. https://doi.org/10.1007/s10854-023-09929-z
Article CAS PubMed PubMed Central Google Scholar
Chu L, Zhang Y, He L, Shen Q, Tan M, Wu Y (2023) Carbon quantum Dots from roasted coffee beans: their degree and mechanism of cytotoxicity and their rapid removal using a pulsed electric field. Foods 12(12):2353
CAS PubMed PubMed Central Google Scholar
Kolekar AG, Nille OS, Koparde SV, Patil AS, Waghmare RD, Sohn D, Anbhule PV, Kolekar GB, Gokavi GS, More VR (2024) Green, facial zinc doped hydrothermal synthesis of cinnamon derived fluorescent carbon Dots (Zn–Cn–CDs) for highly selective and sensitive Cr6+ and Mn7+ metal ion sensing application. Spectrochim Acta Mol Biomol Spectrosc 304:123413. https://doi.org/10.1016/j.saa.2023.123413
Singh DP, Gopinath P (2023) Tragacanth gum-based nano-nutraceuticals synthesis by encapsulation of beetroot juice and Ocimum basilicum leaves for micronutrient deficient population. Int J Biol Macromol 253(Pt 8):127502. https://doi.org/10.1016/j.ijbiomac.2023.127502
Article CAS PubMed Google Scholar
Edam AK, Roomi BA (2024) The role of titanium dioxide nanoparticles on the effectiveness of erythropoietin alfa drug in rats with anemia accompanied with chronic kidney disease. BioNano Sci 1–12. https://doi.org/10.1007/s12668-024-01588-6
Wu XJ, Shi JY, Dai YP, Tang WQ, Cao HJ, Chen JY (2024) Iron indices and hemogram in renal anemia and the improvement with Tribulus terrestris green-formulated silver nanoparticles applied on rat model. Open Chem 22(1):20230212. https://doi.org/10.1515/chem-2023-0212
Chen JY, Zhang L, Luo L, Yang M, Chen Y, Lin F (2023) A nanobody-based complement inhibitor targeting complement component 2 reduces hemolysis in a complement humanized mouse model of autoimmune hemolytic anemia. Clin Immunol 253:109678. https://doi.org/10.1016/j.clim.2023.109678
Article CAS PubMed PubMed Central Google Scholar
Fu Jiaqi C, Xubao C, Xing et al (2025) Mechanism of Angelica sinensis radix polysaccharide regulating bone marrow haematopoietic microenvironment in the treatment of aplastic anaemia. Chin Tissue Eng Res 29(01):44–51
Wei JX, Li YF, Yang XJ et al (2024) Research progress on herbal research, chemical composition and Pharmacological action of different parts of Angelica sinensis. J Chin Med 1–16
Zhang M, Cheng J, Hu J, Luo J, Zhang Y, Lu F, Kong H, Qu H, Zhao Y (2021) Green phellodendri chinensis cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J Nanobiotechnol 19(1):105. https://doi.org/10.1186/s12951-021-00847-y
Lu F, Ma Y, Huang H, Zhang Y, Kong H, Zhao Y, Qu H, Wang Q, Liu Y, Kang Z (2021) Edible and highly biocompatible nanodots from natural plants for the treatment of stress gastric ulcers. Nanoscale 13(14):6809–6818. https://doi.org/10.1039/d1nr01099a
Article CAS PubMed Google Scholar
Wang S, Zhang Y, Kong H, Zhang M, Cheng J, Wang X, Lu F, Qu H, Zhao Y (2019) Antihyperuricemic and anti-gouty arthritis activities of aurantii fructus Immaturus carbonisata-derived carbon Dots. Nanomedicine (London) 14(22):2925–2939. https://doi.org/10.2217/nnm-2019-0255Epub 2019 Aug 16. PMID: 31418646
Ernens I, Lumley AI, Devaux Y (2018) Restoration of cardiac function after anaemia-induced heart failure in zebrafish. J Mol Cell Cardiol 121:223–232. https://doi.org/10.1016/j.yjmcc.2018.07.128
Jia W, Zhen M, Li L, Zhou C, Sun Z, Liu S, Zhao Z, Li J, Wang C, Bai C (2020) Gadofullerene nanoparticles for robust treatment of aplastic anemia induced by chemotherapy drugs. Theranostics 10(15):6886–6897. https://doi.org/10.7150/thno.46794
Article CAS PubMed PubMed Central Google Scholar
Azadkia M, Chatterjee S (2021) A simple measure of conditional dependence. Ann Stat 49(6):3070–3102
Yang Z, Deng M, li l et al (2023) Filling medullary hemopoietic pill on aplastic anemia model mice bone marrow VEGF protein expression and Notch - 1. Chin Mater Med Pharmacol Clinic 39(09):14–18
Barreto JN, McCullough KB, Ice LL, Smith JA (2014) Antineoplastic agents and the associated myelosuppressive effects: a review. J Pharm Pract 27(5):440–446. https://doi.org/10.1177/0897190014546108
Bryer E, David H (2018) Chemotherapy-induced anemia: etiology, pathophysiology, and implications for contemporary practice. Int J Clin Transfus Med 2018:21–31. https://doi.org/10.2147/ijctm.s187569
Kuter DJ (2015) Managing thrombocytopenia associated with cancer chemotherapy. Oncology (Williston Park) 29(4):282–294 PMID: 25952492
Taylor SJ, Duyvestyn JM, Dagger SA, Dishington EJ, Rinaldi CA, Dovey OM, Vassiliou GS, Grove CS, Langdon WY (2017) Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Sci Transl Med 9(402):eaam8060. https://doi.org/10.1126/scitranslmed.aam8060. PMID: 28794285
Zhang Y, Shu CY, Zhen MM, Li J, Yu T, Jia W, Li X, Deng RJ, Zhou Y, Wang CR (2017) A novel bone marrow targeted Gadofullerene agent protect against oxidative injury in chemotherapy. Sci China Mater 60(9):866–880. https://link.springer.com/article/https://doi.org/10.1007/s40843-017-9079-6
Meng H, Leong W, Leong KW, Chen C, Zhao Y (2018) Walking the line: the fate of nanomaterials at biological barriers. Biomaterials 174:41–53. https://doi.org/10.1016/j.biomaterials.2018.04.056
Article CAS PubMed PubMed Central Google Scholar
Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317. https://doi.org/10.1080/10408398.2016.1160363
Wu B, Jiang C, Jin L, Azadan X, Lin J, Lin L, Nie X, Cai G (2024) Serum cytokine profiles during engraftment syndrome and acute graft-versus-host disease in adult patients after hematopoietic stem cell transplantation. Cytokine 178:156582. https://doi.org/10.1016/j.cyto.2024.156582
Article CAS PubMed Google Scholar
Ozkurt M, Hellwig-Bürgel T, Depping R, Kadabere S, Ozyurt R, Karadag A, Erkasap N (2021) miR663 prevents Epo inhibition caused by TNF-Alpha in normoxia and hypoxia. Int J Endocrinol 2021:3670499. https://doi.org/10.1155/2021/3670499PMID: 34367277; PMCID: PMC8337158
Comments (0)