Therapeutic potential of derivatized carbon dots in ameliorating chemotherapy-induced anemia

Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S, Tavakkoly-Bazzaz J (2017) New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 24(6):233–243. https://doi.org/10.1038/cgt.2017.16

Article  CAS  PubMed  Google Scholar 

Lee IH, Lee SJ, Kim J, Lee YH, Chong GO, Kim JM, Lee J, Lee NY, Park SY, Hong DG, Chae YS (2024) Exploring the effect of BRCA1/2 status on chemotherapy-induced hematologic toxicity in patients with ovarian cancer. Cancer Chemother Pharmacol 94(1):103–108. https://doi.org/10.1007/s00280-024-04670-8

Article  CAS  PubMed  Google Scholar 

Boccia R, Glaspy J, Crawford J, Aapro M (2022) Chemotherapy-Induced neutropenia and febrile neutropenia in the US: A beast of burden that needs to be tamed? Oncologist 27(8):625–636. https://doi.org/10.1093/oncolo/oyac074

Article  PubMed  PubMed Central  Google Scholar 

Epstein RS, Aapro MS, Basu Roy UK, Salimi T, Krenitsky J, Leone-Perkins ML, Girman C, Schlusser C, Crawford J (2020) Patient burden and real-world management of chemotherapy-induced myelosuppression: results from an online survey of patients with solid tumors. Adv Ther 37(8):3606–3618. https://doi.org/10.1007/s12325-020-01419-6

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Wang Z, Wu H, Jia W, Teng L, Song J, Yang X, Wang D (2018) Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress. Int J Biol Macromol 120(Pt A):736–744

CAS  PubMed  Google Scholar 

Liu C, Zhang F, Hu J, Gao W, Zhang M (2021) A Mini review on pH-sensitive photoluminescence in carbon nanodots. Front Chem 8:605028. https://doi.org/10.3389/fchem.2020.605028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan WU, Qin L, Alam A, Zhou P, Peng Y, Wang Y (2021) Water-soluble green-emitting carbon nanodots with enhanced thermal stability for biological applications. Nanoscale 13(7):4301–4307. https://doi.org/10.1039/d0nr09131f

Chen L, Song M, Guan J, Shu Y, Jin D, Fan G, Xu Q, Hu XY (2021) A highly-specific photoelectrochemical platform based on carbon nanodots and polymers functionalized organic-inorganic perovskite for cholesterol sensing. Talanta 225:122050

CAS  PubMed  Google Scholar 

Khan S, Dunphy A, Anike MS, Belperain S, Patel K, Chiu NHL, Jia Z (2021) Recent advances in carbon nanodots: A promising nanomaterial for biomedical applications. Int J Mol Sci 22(13):6786. https://doi.org/10.3390/ijms22136786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azami M, Wei J, Valizadehderakhshan M, Jayapalan A, Ayodele OO, Nowlin K (2023) Effect of doping heteroatoms on the optical behaviors and radical scavenging properties of carbon nanodots. J Phys Chem C Nanomater Interfaces 127(15):7360–7370. https://doi.org/10.1021/acs.jpcc.3c00953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, Huang C, Guo X, Zhu Y, Li Y, Duan Y, Gao J (2025) A fluorescence biosensor based on carbon quantum dots prepared from pomegranate peel and T-Hg2+-T Mismatch for Hg2+ detection. J Fluoresc 35(3):1651–1659. https://doi.org/10.1007/s10895-024-03645-5

Mohammadi A, Haghnazari N, Karami C (2023) Green synthesized fluorescent carbon dots from oak apple for detection of Efavirenz. J Mater Sci Mater Electron 34(6):517. https://doi.org/10.1007/s10854-023-09929-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu L, Zhang Y, He L, Shen Q, Tan M, Wu Y (2023) Carbon quantum Dots from roasted coffee beans: their degree and mechanism of cytotoxicity and their rapid removal using a pulsed electric field. Foods 12(12):2353

CAS  PubMed  PubMed Central  Google Scholar 

Kolekar AG, Nille OS, Koparde SV, Patil AS, Waghmare RD, Sohn D, Anbhule PV, Kolekar GB, Gokavi GS, More VR (2024) Green, facial zinc doped hydrothermal synthesis of cinnamon derived fluorescent carbon Dots (Zn–Cn–CDs) for highly selective and sensitive Cr6+ and Mn7+ metal ion sensing application. Spectrochim Acta Mol Biomol Spectrosc 304:123413. https://doi.org/10.1016/j.saa.2023.123413

Article  CAS  Google Scholar 

Singh DP, Gopinath P (2023) Tragacanth gum-based nano-nutraceuticals synthesis by encapsulation of beetroot juice and Ocimum basilicum leaves for micronutrient deficient population. Int J Biol Macromol 253(Pt 8):127502. https://doi.org/10.1016/j.ijbiomac.2023.127502

Article  CAS  PubMed  Google Scholar 

Edam AK, Roomi BA (2024) The role of titanium dioxide nanoparticles on the effectiveness of erythropoietin alfa drug in rats with anemia accompanied with chronic kidney disease. BioNano Sci 1–12. https://doi.org/10.1007/s12668-024-01588-6

Wu XJ, Shi JY, Dai YP, Tang WQ, Cao HJ, Chen JY (2024) Iron indices and hemogram in renal anemia and the improvement with Tribulus terrestris green-formulated silver nanoparticles applied on rat model. Open Chem 22(1):20230212. https://doi.org/10.1515/chem-2023-0212

Chen JY, Zhang L, Luo L, Yang M, Chen Y, Lin F (2023) A nanobody-based complement inhibitor targeting complement component 2 reduces hemolysis in a complement humanized mouse model of autoimmune hemolytic anemia. Clin Immunol 253:109678. https://doi.org/10.1016/j.clim.2023.109678

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Jiaqi C, Xubao C, Xing et al (2025) Mechanism of Angelica sinensis radix polysaccharide regulating bone marrow haematopoietic microenvironment in the treatment of aplastic anaemia. Chin Tissue Eng Res 29(01):44–51

Wei JX, Li YF, Yang XJ et al (2024) Research progress on herbal research, chemical composition and Pharmacological action of different parts of Angelica sinensis. J Chin Med 1–16

Zhang M, Cheng J, Hu J, Luo J, Zhang Y, Lu F, Kong H, Qu H, Zhao Y (2021) Green phellodendri chinensis cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J Nanobiotechnol 19(1):105. https://doi.org/10.1186/s12951-021-00847-y

Article  CAS  Google Scholar 

Lu F, Ma Y, Huang H, Zhang Y, Kong H, Zhao Y, Qu H, Wang Q, Liu Y, Kang Z (2021) Edible and highly biocompatible nanodots from natural plants for the treatment of stress gastric ulcers. Nanoscale 13(14):6809–6818. https://doi.org/10.1039/d1nr01099a

Article  CAS  PubMed  Google Scholar 

Wang S, Zhang Y, Kong H, Zhang M, Cheng J, Wang X, Lu F, Qu H, Zhao Y (2019) Antihyperuricemic and anti-gouty arthritis activities of aurantii fructus Immaturus carbonisata-derived carbon Dots. Nanomedicine (London) 14(22):2925–2939. https://doi.org/10.2217/nnm-2019-0255Epub 2019 Aug 16. PMID: 31418646

Article  CAS  Google Scholar 

Ernens I, Lumley AI, Devaux Y (2018) Restoration of cardiac function after anaemia-induced heart failure in zebrafish. J Mol Cell Cardiol 121:223–232. https://doi.org/10.1016/j.yjmcc.2018.07.128

Jia W, Zhen M, Li L, Zhou C, Sun Z, Liu S, Zhao Z, Li J, Wang C, Bai C (2020) Gadofullerene nanoparticles for robust treatment of aplastic anemia induced by chemotherapy drugs. Theranostics 10(15):6886–6897. https://doi.org/10.7150/thno.46794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azadkia M, Chatterjee S (2021) A simple measure of conditional dependence. Ann Stat 49(6):3070–3102

Google Scholar 

Yang Z, Deng M, li l et al (2023) Filling medullary hemopoietic pill on aplastic anemia model mice bone marrow VEGF protein expression and Notch - 1. Chin Mater Med Pharmacol Clinic 39(09):14–18

Barreto JN, McCullough KB, Ice LL, Smith JA (2014) Antineoplastic agents and the associated myelosuppressive effects: a review. J Pharm Pract 27(5):440–446. https://doi.org/10.1177/0897190014546108

Article  PubMed  Google Scholar 

Bryer E, David H (2018) Chemotherapy-induced anemia: etiology, pathophysiology, and implications for contemporary practice. Int J Clin Transfus Med 2018:21–31. https://doi.org/10.2147/ijctm.s187569

Article  Google Scholar 

Kuter DJ (2015) Managing thrombocytopenia associated with cancer chemotherapy. Oncology (Williston Park) 29(4):282–294 PMID: 25952492

PubMed  Google Scholar 

Taylor SJ, Duyvestyn JM, Dagger SA, Dishington EJ, Rinaldi CA, Dovey OM, Vassiliou GS, Grove CS, Langdon WY (2017) Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Sci Transl Med 9(402):eaam8060. https://doi.org/10.1126/scitranslmed.aam8060. PMID: 28794285

Zhang Y, Shu CY, Zhen MM, Li J, Yu T, Jia W, Li X, Deng RJ, Zhou Y, Wang CR (2017) A novel bone marrow targeted Gadofullerene agent protect against oxidative injury in chemotherapy. Sci China Mater 60(9):866–880. https://link.springer.com/article/https://doi.org/10.1007/s40843-017-9079-6

Article  CAS  Google Scholar 

Meng H, Leong W, Leong KW, Chen C, Zhao Y (2018) Walking the line: the fate of nanomaterials at biological barriers. Biomaterials 174:41–53. https://doi.org/10.1016/j.biomaterials.2018.04.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317. https://doi.org/10.1080/10408398.2016.1160363

Wu B, Jiang C, Jin L, Azadan X, Lin J, Lin L, Nie X, Cai G (2024) Serum cytokine profiles during engraftment syndrome and acute graft-versus-host disease in adult patients after hematopoietic stem cell transplantation. Cytokine 178:156582. https://doi.org/10.1016/j.cyto.2024.156582

Article  CAS  PubMed  Google Scholar 

Ozkurt M, Hellwig-Bürgel T, Depping R, Kadabere S, Ozyurt R, Karadag A, Erkasap N (2021) miR663 prevents Epo inhibition caused by TNF-Alpha in normoxia and hypoxia. Int J Endocrinol 2021:3670499. https://doi.org/10.1155/2021/3670499PMID: 34367277; PMCID: PMC8337158

Article  CAS 

Comments (0)

No login
gif