Genetic profiling of synchronous pituitary corticotroph adenomas

De Sousa SMC, Wang PPS, Santoreneos S, Shen A, Yates CJ, Babic M et al (2019) The genomic landscape of sporadic prolactinomas. Endocr Pathol 30(4):318–328

Article  PubMed  Google Scholar 

Kontogeorgos G, Kovacs K, Horvath E, Scheithauer BW (1991) Multiple adenomas of the human pituitary. A retrospective autopsy study with clinical implications. J Neurosurg 74(2):243–247

Article  PubMed  Google Scholar 

Magri F, Villa C, Locatelli D, Scagnelli P, Lagonigro MS, Morbini P et al (2010) Prevalence of double pituitary adenomas in a surgical series: clinical, histological and genetic features. J Endocrinol Invest 33(5):325–331

Article  PubMed  Google Scholar 

Zieliński G, Sajjad EA, Maksymowicz M, Pękul M, Koziarski A (2019) Double pituitary adenomas in a large surgical series. Pituitary 22(6):620–632

Article  PubMed  PubMed Central  Google Scholar 

Budan RM, Georgescu CE (2016) Multiple pituitary adenomas: A systematic review. Front Endocrinol (Lausanne) 7:1–8

Article  PubMed  Google Scholar 

Ratliff JK, Oldfield EH (2000) Multiple pituitary adenomas in cushing’s disease. J Neurosurg 93(5):753–761

Article  PubMed  Google Scholar 

Ogando-Rivas E, Alalade AF, Boatey J, Schwartz TH (2017) Double pituitary adenomas are most commonly associated with GH- and ACTH-secreting tumors: systematic review of the literature. Pituitary 20(6):702–708

Article  PubMed  Google Scholar 

Zhang D (2025) Supplemental data. Deposited in Figshare; [Available from: https://figshare.com/s/abbc404638981a68212b

Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D et al (2016) The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med 8(1):79–88

Article  PubMed  PubMed Central  Google Scholar 

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

Article  PubMed  PubMed Central  Google Scholar 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

Article  PubMed  PubMed Central  Google Scholar 

Koboldt DC, Larson DE, Wilson RK (2013) Using VarScan 2 for germline variant calling and somatic mutation detection. Curr Protoc Bioinf.;44:15.4.1-7.

Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10(10):1556–1566

Article  PubMed  PubMed Central  Google Scholar 

Arts P, Simons A, AlZahrani MS, Yilmaz E, AlIdrissi E, van Aerde KJ et al (2019) Exome sequencing in routine diagnostics: a generic test for 254 patients with primary immunodeficiencies. Genome Med 11(1):38–52

Article  PubMed  PubMed Central  Google Scholar 

Lung MS, Mitchell CA, Doyle MA, Lynch AC, Gorringe KL, Bowtell DDL et al (2020) Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with Pseudomyxoma peritonei. BMC Cancer 20(1):369–377

Article  PubMed  PubMed Central  Google Scholar 

Diets IJ, Waanders E, Ligtenberg MJ, van Bladel DAG, Kamping EJ, Hoogerbrugge PM et al (2018) High yield of pathogenic germline mutations causative or likely causative of the Cancer phenotype in selected children with Cancer. Clin Cancer Res 24(7):1594–1603

Article  PubMed  Google Scholar 

Okano T, Imai K, Naruto T, Okada S, Yamashita M, Yeh TW et al (2020) Whole-Exome Sequencing-Based approach for germline mutations in patients with inborn errors of immunity. J Clin Immunol 40(5):729–740

Article  PubMed  Google Scholar 

Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F et al (2015) Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 6(1):8940–8948

Article  PubMed  Google Scholar 

Urbini M, Nannini M, Astolfi A, Indio V, Vicennati V, De Luca M et al (2018) Whole exome sequencing uncovers germline variants of Cancer-Related genes in sporadic pheochromocytoma. Int J Genomics 2018:6582014–6582022

Article  PubMed  PubMed Central  Google Scholar 

Yin Y, Wu S, Zhao X, Zou L, Luo A, Deng F et al (2019) Whole exome sequencing study of a Chinese concurrent cancer family. Oncol Lett 18(3):2619–2627

PubMed  PubMed Central  Google Scholar 

Zhang D, Du L, Heaney AP (2016) Testicular Receptor-4: novel regulator of glucocorticoid resistance. J Clin Endocrinol Metab 101(8):3123–3133

Article  PubMed  Google Scholar 

Carter RE, Sorkin A (1998) Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J Biol Chem 273(52):35000–35007

Article  PubMed  Google Scholar 

Caruso V, Hägglund MG, Badiali L, Bagchi S, Roshanbin S, Ahmad T et al (2014) The G protein-coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas. Gene 553(1):1–6

Article  PubMed  Google Scholar 

Caruso V, Sreedharan S, Carlini VP, Jacobsson JA, Haitina T, Hammer J et al (2016) mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts. Gene 581(2):139–145

Article  PubMed  Google Scholar 

Khan MZ, He L (2017) Neuro-psychopharmacological perspective of orphan receptors of rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology 234(8):1181–1207

Article  PubMed  Google Scholar 

Sreedharan S, Almén MS, Carlini VP, Haitina T, Stephansson O, Sommer WH et al (2011) The G protein coupled receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central regions including the thalamus, cerebellum and the arcuate nucleus. Febs J 278(24):4881–4894

Article  PubMed  Google Scholar 

Ma Z-Y, Song Z-J, Chen J-H, Wang Y-F, Li S-Q, Zhou L-F et al (2015) Recurrent gain-of-function USP8 mutations in cushing’s disease. Cell Res 25(3):306–317

Article  PubMed  PubMed Central  Google Scholar 

Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F et al (2015) Mutations in the deubiquitinase gene USP8 cause cushing’s disease. Nat Genet 47(1):31–38

Article  PubMed  Google Scholar 

Perez-Rivas LG, Theodoropoulou M, Ferraù F, Nusser C, Kawaguchi K, Stratakis CA et al (2015) The gene of the Ubiquitin-Specific protease 8 is frequently mutated in adenomas causing cushing’s disease. J Clin Endocrinol Metabolism 100(7):E997–E1004

Article  Google Scholar 

Tajima T, Okada T, Ma XM, Ramsey W, Bornstein S, Aguilera G (1999) Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of21-hydroxylase-deficient mice. Gene Ther 6(11):1898–1903

Article  PubMed  Google Scholar 

Pallan PS, Wang C, Lei L, Yoshimoto FK, Auchus RJ, Waterman MR et al (2015) Human cytochrome P450 21A2, the major steroid 21-Hydroxylase: strcture of the enzyme·progestrone substrate complex and Rate-Limiting C-H bond cleavage. J Biol Chem 290(21):13128–13143

Article  PubMed  PubMed Central  Google Scholar 

New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D et al (2013) Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proceedings of the National Academy of Sciences.;110(7):2611-6

Robins T, Bellanne-Chantelot C, Barbaro M, Cabrol S, Wedell A, Lajic S (2007) Characterization of novel missense mutations in CYP21 causing congenital adrenal hyperplasia. J Mol Med 85(3):247–255

Article  PubMed  Google Scholar 

Pu J, Wang Z, Zhou H, Zhong A, Jin K, Ruan L et al (2016) Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature. Oncol Lett 12(1):585–590

Article  PubMed  PubMed Central  Google Scholar 

Paterno V, Fahlbusch R (2014) High-Field iMRI in transsphenoidal pituitary adenoma surgery with special respect to typical localization of residual tumor. Acta Neurochir (Wien) 156(3):463–474 discussion 74

Article  PubMed  Google Scholar 

Kobayashi Y, Takei M, Ohkubo Y, Kakizawa Y, Matoba H, Kumagai M et al (2014) A somatotropin-producing pituitary adenoma with an isolated adrenocorticotropin-producing pituitary adenoma in a female patient with acromegaly, subclinical cushing’s disease and a left adrenal tumor. Endocr J 61(6):589–595

Article 

Comments (0)

No login
gif