De Sousa SMC, Wang PPS, Santoreneos S, Shen A, Yates CJ, Babic M et al (2019) The genomic landscape of sporadic prolactinomas. Endocr Pathol 30(4):318–328
Kontogeorgos G, Kovacs K, Horvath E, Scheithauer BW (1991) Multiple adenomas of the human pituitary. A retrospective autopsy study with clinical implications. J Neurosurg 74(2):243–247
Magri F, Villa C, Locatelli D, Scagnelli P, Lagonigro MS, Morbini P et al (2010) Prevalence of double pituitary adenomas in a surgical series: clinical, histological and genetic features. J Endocrinol Invest 33(5):325–331
Zieliński G, Sajjad EA, Maksymowicz M, Pękul M, Koziarski A (2019) Double pituitary adenomas in a large surgical series. Pituitary 22(6):620–632
Article PubMed PubMed Central Google Scholar
Budan RM, Georgescu CE (2016) Multiple pituitary adenomas: A systematic review. Front Endocrinol (Lausanne) 7:1–8
Ratliff JK, Oldfield EH (2000) Multiple pituitary adenomas in cushing’s disease. J Neurosurg 93(5):753–761
Ogando-Rivas E, Alalade AF, Boatey J, Schwartz TH (2017) Double pituitary adenomas are most commonly associated with GH- and ACTH-secreting tumors: systematic review of the literature. Pituitary 20(6):702–708
Zhang D (2025) Supplemental data. Deposited in Figshare; [Available from: https://figshare.com/s/abbc404638981a68212b
Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D et al (2016) The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med 8(1):79–88
Article PubMed PubMed Central Google Scholar
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760
Article PubMed PubMed Central Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303
Article PubMed PubMed Central Google Scholar
Koboldt DC, Larson DE, Wilson RK (2013) Using VarScan 2 for germline variant calling and somatic mutation detection. Curr Protoc Bioinf.;44:15.4.1-7.
Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10(10):1556–1566
Article PubMed PubMed Central Google Scholar
Arts P, Simons A, AlZahrani MS, Yilmaz E, AlIdrissi E, van Aerde KJ et al (2019) Exome sequencing in routine diagnostics: a generic test for 254 patients with primary immunodeficiencies. Genome Med 11(1):38–52
Article PubMed PubMed Central Google Scholar
Lung MS, Mitchell CA, Doyle MA, Lynch AC, Gorringe KL, Bowtell DDL et al (2020) Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with Pseudomyxoma peritonei. BMC Cancer 20(1):369–377
Article PubMed PubMed Central Google Scholar
Diets IJ, Waanders E, Ligtenberg MJ, van Bladel DAG, Kamping EJ, Hoogerbrugge PM et al (2018) High yield of pathogenic germline mutations causative or likely causative of the Cancer phenotype in selected children with Cancer. Clin Cancer Res 24(7):1594–1603
Okano T, Imai K, Naruto T, Okada S, Yamashita M, Yeh TW et al (2020) Whole-Exome Sequencing-Based approach for germline mutations in patients with inborn errors of immunity. J Clin Immunol 40(5):729–740
Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F et al (2015) Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 6(1):8940–8948
Urbini M, Nannini M, Astolfi A, Indio V, Vicennati V, De Luca M et al (2018) Whole exome sequencing uncovers germline variants of Cancer-Related genes in sporadic pheochromocytoma. Int J Genomics 2018:6582014–6582022
Article PubMed PubMed Central Google Scholar
Yin Y, Wu S, Zhao X, Zou L, Luo A, Deng F et al (2019) Whole exome sequencing study of a Chinese concurrent cancer family. Oncol Lett 18(3):2619–2627
PubMed PubMed Central Google Scholar
Zhang D, Du L, Heaney AP (2016) Testicular Receptor-4: novel regulator of glucocorticoid resistance. J Clin Endocrinol Metab 101(8):3123–3133
Carter RE, Sorkin A (1998) Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J Biol Chem 273(52):35000–35007
Caruso V, Hägglund MG, Badiali L, Bagchi S, Roshanbin S, Ahmad T et al (2014) The G protein-coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas. Gene 553(1):1–6
Caruso V, Sreedharan S, Carlini VP, Jacobsson JA, Haitina T, Hammer J et al (2016) mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts. Gene 581(2):139–145
Khan MZ, He L (2017) Neuro-psychopharmacological perspective of orphan receptors of rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology 234(8):1181–1207
Sreedharan S, Almén MS, Carlini VP, Haitina T, Stephansson O, Sommer WH et al (2011) The G protein coupled receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central regions including the thalamus, cerebellum and the arcuate nucleus. Febs J 278(24):4881–4894
Ma Z-Y, Song Z-J, Chen J-H, Wang Y-F, Li S-Q, Zhou L-F et al (2015) Recurrent gain-of-function USP8 mutations in cushing’s disease. Cell Res 25(3):306–317
Article PubMed PubMed Central Google Scholar
Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F et al (2015) Mutations in the deubiquitinase gene USP8 cause cushing’s disease. Nat Genet 47(1):31–38
Perez-Rivas LG, Theodoropoulou M, Ferraù F, Nusser C, Kawaguchi K, Stratakis CA et al (2015) The gene of the Ubiquitin-Specific protease 8 is frequently mutated in adenomas causing cushing’s disease. J Clin Endocrinol Metabolism 100(7):E997–E1004
Tajima T, Okada T, Ma XM, Ramsey W, Bornstein S, Aguilera G (1999) Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of21-hydroxylase-deficient mice. Gene Ther 6(11):1898–1903
Pallan PS, Wang C, Lei L, Yoshimoto FK, Auchus RJ, Waterman MR et al (2015) Human cytochrome P450 21A2, the major steroid 21-Hydroxylase: strcture of the enzyme·progestrone substrate complex and Rate-Limiting C-H bond cleavage. J Biol Chem 290(21):13128–13143
Article PubMed PubMed Central Google Scholar
New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D et al (2013) Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proceedings of the National Academy of Sciences.;110(7):2611-6
Robins T, Bellanne-Chantelot C, Barbaro M, Cabrol S, Wedell A, Lajic S (2007) Characterization of novel missense mutations in CYP21 causing congenital adrenal hyperplasia. J Mol Med 85(3):247–255
Pu J, Wang Z, Zhou H, Zhong A, Jin K, Ruan L et al (2016) Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature. Oncol Lett 12(1):585–590
Article PubMed PubMed Central Google Scholar
Paterno V, Fahlbusch R (2014) High-Field iMRI in transsphenoidal pituitary adenoma surgery with special respect to typical localization of residual tumor. Acta Neurochir (Wien) 156(3):463–474 discussion 74
Kobayashi Y, Takei M, Ohkubo Y, Kakizawa Y, Matoba H, Kumagai M et al (2014) A somatotropin-producing pituitary adenoma with an isolated adrenocorticotropin-producing pituitary adenoma in a female patient with acromegaly, subclinical cushing’s disease and a left adrenal tumor. Endocr J 61(6):589–595
Comments (0)