Microbiome and metabolic disorder in prolactinoma: intrinsic gender differences and extrinsic therapy effects

Ho KKY, Fleseriu M, Wass J et al (2019) A Tale of pituitary adenomas: to NET or not to NET. Pituitary 22(6):569–573. https://doi.org/10.1007/s11102-019-00988-2

Article  PubMed  Google Scholar 

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united States in 2011–2015. Neuro-Oncol 20(suppl4):iv1–iv86. https://doi.org/10.1093/neuonc/noy131

Article  PubMed  PubMed Central  Google Scholar 

Melmed S, Kaiser UB, Lopes MB et al (2022) Clinical biology of the pituitary adenoma. Endocr Rev 43(6):1003–1037. https://doi.org/10.1210/endrev/bnac010

Article  PubMed  PubMed Central  Google Scholar 

Petersenn S, Fleseriu M, Casanueva FF et al (2023) Diagnosis and management of prolactin-secreting pituitary adenomas: a pituitary society international consensus statement. Nat Rev Endocrinol Published Online September 5. https://doi.org/10.1038/s41574-023-00886-5

Agustsson TT, Baldvinsdottir T, Jonasson JG et al (2015) The epidemiology of pituitary adenomas in iceland, 1955–2012: a nationwide population-based study. Eur J Endocrinol 173(5):655–664. https://doi.org/10.1530/EJE-15-0189

Article  CAS  PubMed  Google Scholar 

Sonigo C, Bouilly J, Carré N et al (2012) Hyperprolactinemia-induced ovarian acyclicity is reversed by Kisspeptin administration. J Clin Invest 122(10):3791–3795. https://doi.org/10.1172/JCI63937

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser UB (2012) Hyperprolactinemia and infertility: new insights. J Clin Invest 122(10):3467–3468. https://doi.org/10.1172/JCI64455

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noel MB, Woodside B (1993) Effects of systemic and central prolactin injections on food intake, weight gain, and estrous Cyclicity in female rats. Physiol Behav 54(1):151–154. https://doi.org/10.1016/0031-9384(93)90057-M

Article  CAS  PubMed  Google Scholar 

Lobie PE, García-Aragón J, Waters MJ (1993) Prolactin receptor expression in the Gastrointestinal tract: characterization of the prolactin receptor of gastric mucosa. J Endocrinol 139(3):371–NP. https://doi.org/10.1677/joe.0.1390371

Article  CAS  PubMed  Google Scholar 

Brandebourg T, Hugo E, Ben-Jonathan N (2007) Adipocyte prolactin: regulation of release and putative functions. Diabetes Obes Metab 9(4):464–476. https://doi.org/10.1111/j.1463-1326.2006.00671.x

Article  CAS  PubMed  Google Scholar 

Teerapornpuntakit J, Klanchui A, Karoonuthaisiri N, Wongdee K, Charoenphandhu N (2014) Expression of transcripts related to intestinal ion and nutrient absorption in pregnant and lactating rats as determined by custom-designed cDNA microarray. Mol Cell Biochem 391(1–2):103–116. https://doi.org/10.1007/s11010-014-1992-8

Article  CAS  PubMed  Google Scholar 

Charoenphandhu N, Nakkrasae Liad, Kraidith K et al (2009) Two-step stimulation of intestinal Ca 2+ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol-Endocrinol Metab 297(3):E609–E619. https://doi.org/10.1152/ajpendo.00347.2009

Article  CAS  PubMed  Google Scholar 

Grattan DR (2015) 60 YEARS OF NEUROENDOCRINOLOGY: the hypothalamo-prolactin axis. J Endocrinol 226(2):T101–122. https://doi.org/10.1530/JOE-15-0213

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Funcke JB, Zi Z et al (2021) Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab 33(8):1624–1639e9. https://doi.org/10.1016/j.cmet.2021.06.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11(9):639–647. https://doi.org/10.1038/nrmicro3089

Article  CAS  PubMed  Google Scholar 

Qi X, Yun C, Pang Y, Qiao J (2021) The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 13(1):1–21. https://doi.org/10.1080/19490976.2021.1894070

Article  CAS  PubMed  Google Scholar 

Lin B, Wang M, Gao R et al (2022) Characteristics of Gut Microbiota in Patients with GH-Secreting Pituitary Adenoma. Woodworth MH, ed. Microbiol Spectr.;10(1):e00425-21. https://doi.org/10.1128/spectrum.00425-21

Neuman H, Debelius JW, Knight R, Koren O (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39(4):509–521. https://doi.org/10.1093/femsre/fuu010

Article  PubMed  Google Scholar 

Luzardo-Ocampo I, Ocampo-Ruiz AL, Dena-Beltrán JL, De La Martínez G, Clapp C, Macotela Y (2023) The diversity of gut microbiota at weaning is altered in prolactin Receptor-Null mice. Nutrients 15(15):3447. https://doi.org/10.3390/nu15153447

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rindi G, Mete O, Uccella S et al (2022) Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 33(1):115–154. https://doi.org/10.1007/s12022-022-09708-2

Article  CAS  PubMed  Google Scholar 

Gao R, Wang Z, Li H et al (2020) Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. J Gastroenterol Hepatol 35(12):2109–2121. https://doi.org/10.1111/jgh.15077

Article  PubMed  Google Scholar 

Rühlemann MC, Hermes BM, Bang C et al (2021) Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut Microbiome. Nat Genet 53(2):147–155. https://doi.org/10.1038/s41588-020-00747-1

Article  CAS  PubMed  Google Scholar 

Qin Y, Havulinna AS, Liu Y et al (2022) Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 54(2):134–142. https://doi.org/10.1038/s41588-021-00991-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Lu T, Pettersson-Kymmer U et al (2023) Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet 55(1):44–53. https://doi.org/10.1038/s41588-022-01270-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeFronzo RA, Bromocriptine (2011) A sympatholytic, D2-Dopamine agonist for the treatment of type 2 diabetes. Diabetes Care 34(4):789–794. https://doi.org/10.2337/dc11-0064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hacioglu A, Gundogdu A, Nalbantoglu U et al (2021) Gut microbiota in patients with newly diagnosed acromegaly: a pilot cross-sectional study. Pituitary 24(4):600–610. https://doi.org/10.1007/s11102-021-01137-4

Article  PubMed  Google Scholar 

Sahin S, Gundogdu A, Nalbantoglu U et al (2024) The comprehensive evaluation of oral and fecal microbiota in patients with acromegaly. Pituitary 27(5):555–566. https://doi.org/10.1007/s11102-024-01444-6

Article  CAS  PubMed  Google Scholar 

Lin B, Melnikov V, Guo S et al (2024) Concomitant gut dysbiosis and defective gut barrier serve as the bridges between hypercortisolism and chronic systemic inflammation in cushing’s disease. Eur J Endocrinol 191(5):509–522. https://doi.org/10.1093/ejendo/lvae139

Article  CAS  PubMed  Google Scholar 

Zúñiga D, Stumpf MAM, Monteiro ALS, Glezer A (2023) Aromatase inhibitors as a therapeutic strategy for male prolactinoma resistant to dopamine agonists: a retrospective cohort study and literature review. J Endocrinol Invest Published Online November. https://doi.org/10.1007/s40618-023-02231-z

Article 

Comments (0)

No login
gif