Novel CTNNB1 gene mutations reveal critical pathogenic mechanisms in pediatric hepatoblastoma

Cao Y, Wu S, Tang H (2024) An update on diagnosis and treatment of hepatoblastoma. Biosci Trends 17:445–457

Google Scholar 

Wang HS, Lao J, Jiang RS, Wang B, Ma XP, Wang JY (2024) Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 12:1309693

Google Scholar 

Nagae G, Yamamoto S, Fujita M et al (2021) Genetic and epigenetic basis of hepatoblastoma diversity. Nat Commun 12:5423

CAS  Google Scholar 

Buendia MA (2014) Unravelling the genetics of hepatoblastoma: few mutations, what else? J Hepatol 61:1202–1204

CAS  Google Scholar 

Gröbner SN, Worst BC, Weischenfeldt J et al (2018) The landscape of genomic alterations across childhood cancers. Nature 559:E10

Google Scholar 

Lim IIP, Bondoc AJ, Geller JI, Tiao GM (2018) Hepatoblastoma-the evolution of biology, surgery, and transplantation. Children (Basel) 6:1

Google Scholar 

Jia D, Dong R, Jing Y, Xu D, Wang Q, Chen L, Li Q, Huang Y, Zhang Y, Zhang Z, Liu L, Zheng S, Xia Q, Wang H, Dong K, He X (2014) Exome sequencing of hepatoblastoma reveals novel mutations and cancer genes in the Wnt pathway and ubiquitin ligase complex. Hepatology 60:1686–1696

CAS  Google Scholar 

Carrillo-Reixach J, Torrens L, Simon-Coma M et al (2020) Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications. J Hepatol 73:328–341

CAS  Google Scholar 

Bell D, Ranganathan S, Tao J, Monga SP (2017) Novel advances in understanding of molecular pathogenesis of hepatoblastoma: a Wnt/beta-catenin perspective. Gene Expr 17:141–154

CAS  Google Scholar 

van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

Google Scholar 

Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650–1653

CAS  Google Scholar 

Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan C, Xu M, Sun H, Liu C, Wei P, Du X (2018) The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol 11:113

Google Scholar 

Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY (2018) miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 11:12

Google Scholar 

Gajos-Michniewicz A, Czyz M (2020) WNT signaling in melanoma. Int J Mol Sci 21:4852

CAS  Google Scholar 

Sumazin P, Chen Y, Treviño LR et al (2017) Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology 65:104–121

CAS  Google Scholar 

Lee H, El Jabbour T, Ainechi S, Gay LM, Elvin JA, Vergilio JA, Suh J, Ramkissoon SH, Ali SM, Schrock A, Fabrizio D, Frampton G, Nazeer T, Miller VA, Stephens PJ, Ross JS (2017) General paucity of genomic alteration and low tumor mutation burden in refractory and metastatic hepatoblastoma: comprehensive genomic profiling study. Hum Pathol 70:84–91

CAS  Google Scholar 

Xing Y, Takemaru K, Liu J, Berndt JD, Zheng JJ, Moon RT, Xu W (2008) Crystal structure of a full-length beta-catenin. Structure 16:478–487

CAS  Google Scholar 

Huber AH, Weis WI (2001) The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105:391–402

CAS  Google Scholar 

Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W (2017) Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget 9:5492–5508

Google Scholar 

Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59:269–273

CAS  Google Scholar 

López-Terrada D, Gunaratne PH, Adesina AM, Pulliam J, Hoang DM, Nguyen Y, Mistretta TA, Margolin J, Finegold MJ (2009) Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum Pathol 40:783–794

Google Scholar 

Eichenmüller M, Trippel F, Kreuder M, Beck A, Schwarzmayr T, Häberle B, Cairo S, Leuschner I, von Schweinitz D, Strom TM, Kappler R (2014) The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J Hepatol 61:1312–1320

Google Scholar 

Aguiar TFM, Carneiro TN (2017) The genetic and epigenetic landscapes of hepatoblastomas. Appl Cancer Res 37:20

Google Scholar 

Javanmard D, Najafi M, Babaei MR, Karbalaie Niya MH, Esghaei M, Panahi M, Safarnezhad TF, Tavakoli A, Jazayeri SM, Ghaffari H, Ataei-Pirkooh A, Monavari SH, Bokharaei-Salim F (2020) Investigation of CTNNB1 gene mutations and expression in hepatocellular carcinoma and cirrhosis in association with hepatitis B virus infection. Infect Agent Cancer 15:37

CAS  Google Scholar 

Wang S, Tian Y, Wu D, Zhu H, Luo D, Gong W, Zhou Y, Zhou J, Zhang Z (2012) Genetic variation of CTNNB1 gene is associated with susceptibility and prognosis of gastric cancer in a Chinese population. Mutagenesis 27:623–630

CAS  Google Scholar 

Ragazzon B, Libé R, Gaujoux S, Assié G, Fratticci A, Launay P, Clauser E, Bertagna X, Tissier F, de Reyniès A, Bertherat J (2010) Transcriptome analysis reveals that p53 and -catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res 70:8276–8281

CAS  Google Scholar 

Björklund P, Lindberg D, Akerström G, Westin G (2008) Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer 7:53

Google Scholar 

Chesire DR, Ewing CM, Sauvageot J, Bova GS, Isaacs WB (2000) Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 45:323–334

CAS  Google Scholar 

Jia YM, Xie YT, Wang YJ, Han JY, Tian XX, Fang WG (2015) Association of genetic polymorphisms in CDH1 and CTNNB1 with breast cancer susceptibility and patients’ prognosis among Chinese Han women. PLoS ONE 10:e0135865

Google Scholar 

Machin P, Catasus L, Pons C, Muñoz J, Matias-Guiu X, Prat J (2002) CTNNB1 mutations and beta-catenin expression in endometrial carcinomas. Hum Pathol 33:206–212

CAS  Google Scholar 

Zyla RE, Olkhov-Mitsel E, Amemiya Y, Bassiouny D, Seth A, Djordjevic B, Nofech-Mozes S, Parra-Herran C (2021) CTNNB1 mutations and aberrant β-catenin expression in ovarian endometrioid carcinoma: correlation with patient outcome. Am J Surg Pathol 45:68–76

Google Scholar 

Morandi L, Righi A, Maletta F, Rucci P, Pagni F, Gallo M, Rossi S, Caporali L, Sapino A, Lloyd RV, Asioli S (2017) Somatic mutation profiling of hobnail variant of papillary thyroid carcinoma. Endocr Relat Cancer 24:107–117

CAS  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

Google Scholar 

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

CAS  Google Scholar 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

CAS  Google Scholar 

Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29:308–311

CAS  Google Scholar 

1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526:68–74

Google Scholar 

Liu X, Li C, Mou C, Dong Y, Tu Y (2020) dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med 12:103

CAS  Google Scholar 

Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, Genome Aggregation Database Consortium, Rehm HL, MacArthur DG, O’Donnell-Luria A (2022) Variant interpretation using population databases: lessons from gnomAD. Hum Mutat 43:1012–1030

Google Scholar 

Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucl Acids Res 42:D980–D985

CAS  Google Scholar 

Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res 33:D514–D517

CAS  Google Scholar 

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

Google Scholar 

Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucl Acids Res 44:W344–W350

CAS  Google Scholar 

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucl Acids Res 51:D638–D646

CAS  Google Scholar 

Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, Lancet D (2016) VarElect: the phenotype-based variation prioritizer of the GeneCards suite. BMC Genom 17:195–206

Google Scholar 

Xia J, Urabe K, Moroi Y, Koga T, Duan H, Li Y, Furue M (2006) beta-Catenin mutation and its nuclear localization are confirmed to be frequent causes of Wnt signaling pathway activation in pilomatricomas. J Dermatol Sci 41:67–75

CAS  Google Scholar 

Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K (1999) An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 18:2401–2410

CAS  Google Scholar 

Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

CAS  Google Scholar 

Barker N, Morin PJ, Clevers H (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77:1–24

CAS  Google Scholar 

Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS, Kim SY, Lee HK, Kim PJ, Oh ST, Yoo NJ, Lee JY (1999) Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res 59:4257

Comments (0)

No login
gif