Development and validation of a cranial ultrasound imaging-based deep learning model for periventricular-intraventricular haemorrhage detection and grading: a two-centre study

Sirgiovanni I, Avignone S, Groppo M et al (2014) Intracranial haemorrhage: an incidental finding at magnetic resonance imaging in a cohort of late preterm and term infants. Pediatr Radiol 44:289–296

PubMed  Google Scholar 

Hausman-Kedem M, Libzon S, Fattal Valevski A et al (2025) Clinical and neuroimaging patterns of perinatal intracranial haemorrhage in fetuses and term-born neonates: a prospective observational cohort study. Arch Dis Child Fetal Neonatal Ed 110(3):303–312

Tan AP, Svrckova P, Cowan F et al (2018) Intracranial haemorrhage in neonates: a review of etiologies, patterns and predicted clinical outcomes. Eur J Paediatr Neuro 22:690–717

Google Scholar 

JJ V (2008) Intracranial haemorrhage: germinal matrix-intraventricular haemorrhage of the premature infant. In: Volpe JJ (ed) Neurology of the newborn. 5th ed. Philadelphia: Saunders Elsevier

Davis AS, Hintz SR, Goldstein RF et al (2014) Outcomes of extremely preterm infants following severe intracranial haemorrhage. J Perinatol 34:203–208

PubMed  Google Scholar 

Mukerji A, Shah V, Shah PS (2015) Periventricular/intraventricular haemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics (Evanston) 136:1132

Google Scholar 

Bolisetty S, Dhawan A, Abdel-Latif M et al (2014) Intraventricular haemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics (Evanston) 133:55

Google Scholar 

Roelants-van RA, Groenendaal F, Beek FJ et al (2001) Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics 32:80–89

Google Scholar 

Zhang Q, Zhou X (2023) Review on the application of imaging examination for brain injury in premature infants. Front Neurol 14:1100623

PubMed  PubMed Central  Google Scholar 

Obeid R, Tabrizi PR, Mansoor A et al (2019) Ventricular shape evaluation on early ultrasound predicts post-hemorrhagic hydrocephalus. Pediatr RES 85:293–298

PubMed  Google Scholar 

Ahmad T, Guida A, Stewart S et al (2024) Can deep learning classify cerebral ultrasound images for the detection of brain injury in very preterm infants? Eur Radiol

Ciceri T, Squarcina L, Giubergia A et al (2023) Review on deep learning fetal brain segmentation from magnetic resonance images. Artif Intell Med 143:102608

PubMed  Google Scholar 

Karimi D, Rollins CK, Velasco-Annis C et al (2023) Learning to segment fetal brain tissue from noisy annotations. Med Image Anal 85:102731

PubMed  PubMed Central  Google Scholar 

Zhu J, Yao S, Yao Z et al (2023) White matter injury detection based on preterm infant cranial ultrasound images. Front Pediatr 11:1144952

PubMed  PubMed Central  Google Scholar 

Naeem A, Anees T, Naqvi RA et al (2022) A Comprehensive analysis of recent deep and federated-learning-based methodologies for brain tumor diagnosis. J Personalized Med 12:275

Google Scholar 

Umapathy S, Murugappan M, Bharathi D et al (2023) Automated computer-aided detection and classification of intracranial haemorrhage using ensemble deep learning techniques. Diagnostics (Basel, Switzerland) 13(18):2987

Kim KY, Nowrangi R, McGehee A et al (2022) Assessment of germinal matrix haemorrhage on head ultrasound with deep learning algorithms. Pediatr Radiol 52:533–538

PubMed  Google Scholar 

Cohen JF, Korevaar DA, Altman DG et al (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6:e12799

Google Scholar 

Inder TE, Perlman JM, Volpe JJ (2018) Chapter 24 - preterm intraventricular haemorrhage/posthemorrhagic hydrocephalus. Volpe’s neurology of the newborn (Sixth Edition):637–698

Singh P, Mukundan R, De Ryke R (2020) Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization. J Digit Imaging 33:273–285

PubMed  Google Scholar 

Mei F, Zhang D, Yang Y (2020) Improved non-local self-similarity measures for effective speckle noise reduction in ultrasound images. Comput Meth Prog Bio 196:105670

Google Scholar 

Goceri E (2023) Medical image data augmentation: techniques, comparisons and interpretations. Artif Intell Rev 56:12561–12605

Google Scholar 

He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 770–778

Woo S et al (2018) CBAM: convolutional block attention module. Computer Vision–ECCV 2018, pp 3–19

Lin TY, Goyal P, Girshick R et al (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42:318–327

PubMed  Google Scholar 

Zhang YY, Mao HM, Wei CG et al (2024) Development and validation of a biparametric MRI deep learning radiomics model with clinical characteristics for predicting perineural invasion in patients with prostate cancer. Acad Radiol 31:5054–5065

PubMed  Google Scholar 

Wang Y, Gao J, Yin Z et al (2024) Differentiation of benign and malignant parotid gland tumors based on the fusion of radiomics and deep learning features on ultrasound images. Front Oncol 14:1384105

PubMed  PubMed Central  Google Scholar 

Qin X, Hu X, Xiao W et al (2023) Preoperative evaluation of hepatocellular carcinoma differentiation using contrast-enhanced ultrasound-based deep-learning radiomics model. J Hepatocell Carcinoma 10:157–168

PubMed  PubMed Central  Google Scholar 

B Z, A K, A L et al (2016) Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2921–2929

Zhou Y, Sharpee TO (2022) Using Global t-SNE to Preserve Intercluster Data Structure. Neural Comput 34:1637–1651

PubMed  PubMed Central  Google Scholar 

Ye H, Gao F, Yin Y et al (2019) Precise diagnosis of intracranial haemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 29:6191–6201

PubMed  PubMed Central  Google Scholar 

Dawud AM, Yurtkan K, Oztoprak H (2019) Application of deep learning in neuroradiology: brain haemorrhage classification using transfer learning. Comput Intell Neurosci 2019:4629859

PubMed  PubMed Central  Google Scholar 

Wang T, Song N, Liu L et al (2021) Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral haemorrhage volume measurement. Bmc Medimaging 21:125

CAS  Google Scholar 

Comments (0)

No login
gif