Neuroprotective efficacy of in Cadmium-induced neurotoxicity: involvement of antioxidant defense, anti-inflammatory, dopaminergic, and cholinergic systems

Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological profile for cadmium. ATSDR, Atlanta (GA)

Google Scholar 

Ajayi EIO, Molehin OR, Adefegha SA, Fakayode AE, Oladele JO, Adewumi SO (2021) Nutritional regulation of metabesity. In: Nutrition, food and diet in ageing and longevity. Healthy ageing and longevity. 14. https://doi.org/10.1007/978-3-030-83017-

Alscher BJ, Hess GC (1993) Antioxidants in higher plants. CRC, Boca Raton, FL

Google Scholar 

Aratani Y (2018) Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640:47–52

Article  CAS  PubMed  Google Scholar 

Ayano G (2016) Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat 2:120. https://doi.org/10.4172/2471-271X.1000120

Article  Google Scholar 

Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World J 2013:394652

Article  Google Scholar 

Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113(9):1250–1256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchannan BB, Gruissem W, Jones RC (2000) Biochemistry and molecular biology of plants, 1st edn. I. K International Pvt Limited Indian 1158–1230

Buetler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888. https://doi.org/10.1097/00003072-199111000-00028

Article  Google Scholar 

Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179. https://doi.org/10.1006/abbi.1997.0197

Chen QY, DesMarais T, Costa M (2019) Metals and mechanisms of carcino-genesis. Annu Rev Pharmacol Toxicol 59:537–554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Claiborne A (1984) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc., Boca Raton, pp 283–284

Google Scholar 

El-demerdash M, Yousef I, Kedwany F, Baghdadi H (2004) Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food Chem Toxicol 42:1563–1571

Article  CAS  PubMed  Google Scholar 

Esterbauer H, Zollner H, Schaur R (1990) In: Vigo C, Pel Frey BA (eds) Lipid oxidation. CRC, Boca Raton, FL, pp 239–283

Google Scholar 

Ezekwe MO, Besong SA, Igbokwe PE (2001) Beneficial influence of purslane and waterleaf supplement to humans. FASEB J 16:A639

Google Scholar 

Goncalves JF, Nicoloso FT, Da Costa P, Farias JG, Carvalho FB, Da Rosa MM, Gutierres JM, Abdalla FH, Pereira JSF, Dias GRM, Barbosa NBV, Dressler VL, Rubin MA, Morsch VM, Schetinger MRC (2012) Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem Toxicol 50:3709–3718. https://doi.org/10.1016/j.fct.2012.07.016

Article  CAS  PubMed  Google Scholar 

Granell S, Gironella M, Bulbena O, Panes J, Mauri M, Sabater L, Aparisi L, Gelpi E, Closa D (2003) Heparin mobilizes Xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med 31:525–530

Article  CAS  PubMed  Google Scholar 

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

Article  CAS  PubMed  Google Scholar 

Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

Article  CAS  PubMed  Google Scholar 

Ikechukwu CC, Ikewuchi JC, Ifeanacho MO (2017) Bioactive phytochemicals in aqueos extract of the leaves of Talinum triangulare. Food Sci Nutr 5:696–701. https://doi.org/10.1002/fns3.449

Article  Google Scholar 

Jaiswal A, Verma A, Jaiswal P (2018) Detrimental effects of heavy metals in soil, plants, and aquatic ecosystems and in humans. J Environ Pathol Toxicol Oncol 37(3):183–197

Article  PubMed  Google Scholar 

Lafuente A, Esquifino I (1999) Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett 110:209–218

Lafuente A, Marquez N, Perez-Lorenzo M, Pazo D, Esquifino A (2000a) Pubertal and postpubertal cadmium exposure differentially affects the hypothalamic–pituitary–testicular axis function in the rat. Food Chem Toxicol 38:913–923

Article  CAS  PubMed  Google Scholar 

Lafuente A, Marquez N, Pazo D, Esquifino A (2000b) Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels of prolactin, GH and ACTH. BioMetals 13:47–55

Article  CAS  PubMed  Google Scholar 

Liang D, Zhou Q, Gong W, Wang Y, Nie Z, He H, Li J, Wu J, Wu C, Zhang J (2011) Studies on the antioxidant and hepatoprotective activities of polysaccharides from Talinum triangulare. J Ethnopharmacol 136(2):316–321

Article  CAS  PubMed  Google Scholar 

Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

Article  CAS  PubMed  Google Scholar 

Méndez-Armenta M, Ríos C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358. https://doi.org/10.1016/j.etap.2006.11.009

Article  CAS  PubMed  Google Scholar 

Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

Article  CAS  PubMed  Google Scholar 

Motz BA, Alberts JR (2005) The validity and utility of geotaxis in young rodents neurotoxicol. Teratol 27:529–533. https://doi.org/10.1016/j.ntt.2005.06.005

Article  CAS  Google Scholar 

Ndrepepa G (2019) Myeloperoxidase—a Bridge linking inflammation and oxi-dative stress with cardiovascular disease. Clin Chim Acta 493:36–51

Article  CAS  PubMed  Google Scholar 

Nye MD, Fry RC, Hoyo C, Murphy SK (2014) Investigating epigenetic effects of prenatal exposure to toxic metals in newborns: challenges and ben-efits. Med Epigenet 2(1):53–59

Article  PubMed  PubMed Central  Google Scholar 

Ofusori DA, Adelakun AE, Ayoka AO, Oluwayinka OP, Omotoso EO, Odukoya SA, Adeyemi DO (2008) Waterleaf (Talinum triangulare) enhances cerebral functions in Swiss albino mice. J Neurol Sci 25(4):239–246

Google Scholar 

Oladele JO, Oyewole OI, Bello OK, Oladele OT (2017) Assessment of protective potentials of Ficus exasperata leaf on Arsenate-Mediated dyslipidemia and oxidative damage in rat’s brain. J Basic Appl Res 3(3):77–82

Google Scholar 

Oladele JO, Oyewole OI, Oyeleke OM, Adewale OO, Adeloju EO (2019) Annona muricata attenuates Cadmium-Induced oxidative stress and renal toxicity in Wistar rats. J Biosci Appli Res 5(4):543–550

Oladele JO, Ajayi EIO, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI (2020a) Curative potentials of Nigerian medicinal plants in COVID-19 treatment: a mechanistic approach. Jordan J Biol Sci 13:681–700

CAS  Google Scholar 

Oladele JO, Oladele OT, Ademiluyi AO, Oyeleke OM, Awosanya OO, Oyewole OI (2020b) Chaya (Jatropha tanjorensis) leafs protect against sodium benzoate mediated renal dysfunction and hepatic damage in rats. Clin Phytoscience. https://doi.org/10.1186/s40816-020-00160-5

Article  Google Scholar 

Oladele JO, Oyeleke OM, Oladele OT, Babatope OD, Awosanya OO (2020c) Nitrobenzene-induced hormonal disruption, alteration of steroidogenic pathway, and oxidative damage in rat: protective effects of Vernonia amygdalina. Clin Phytoscience. https://doi.org/10.1186/s40816-020-00161-4

Article  Google Scholar 

Oladele JO, Adewale OO, Oyeleke OM, Oyewole IO, Salami MO, Owoade G (2020d) Annona muricata protects against cadmium mediated oxidative damage in brain and liver of rats. Acta Facultatis Medicae Naissensis 37(3):252–260. https://doi.org/10.5937/afmnai2003252O

Oladele JO, Oyeleke OM, Oladele OT, Olaniyan MD (2020e) Neuroprotective mechanism of Vernonia amygdalina in a rat model of neurodegenerative diseases. Toxicol Rep 7:1223–1232. https://doi.org/10.1016/j.toxrep.2020.09.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oladele JO, Ajayi EIO, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT (2020f). A systematic review on COVID-19 pandemic with special emphasis on curative potentials of medicinal plants. Heliyon 6:1–17. https://doi.org/10.1016/j.heliyon.2020.e04897

Oladele JO, Oladiji AT, Oladele OT, Oyeleke OM (2021a) Reactive oxygen species in neurodegenerative diseases: implications in pathogenesis and treatment strategies [Online First]. IntechOpen. https://doi.org/10.5772/intechopen.99976

Oladele JO, Oyeleke OM, Akindolie BO, Olowookere BD, Oladele OT (2021b) Vernonia amygdalina abates oxidative hepatic damage and inflammation associated with nitrobenzene in rat. Jordan J Biol Sci 14(3):463–469. https://doi.org/10.54319/jjbs/140311

Oladele JO, Anyim JC, Oyeleke OM, Olowookere BD, Bamigboye MO, Oladele OO, Oladiji AT (2021c) Telfairia occidentalis mitigates dextran sodium sulphate-induced ulcerative colitis in rats via suppression of oxidative stress, lipid peroxidation and inflammation. J Food Biochem. https://doi.org/10.1111/jfbc.13873

Oladele JO, Oladele OT, Oyeleke OM, Oladiji AT (2021d) Neurological complications in COVID-19: implications on international health security and possible interventions of phytochemicals. Contemporary Developments and Perspectives in International Health Security - Volume 2. http://dx.doi.org/10.5772/intechopen.96039

Comments (0)

No login
gif