Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
Article CAS PubMed Google Scholar
Aguilar Diaz De Leon J, Borges CR (2020) Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J vis Exp. https://doi.org/10.3791/61122
Ali SK, Ali RH (2022) Effects of antidiabetic agents on Alzheimer’s disease biomarkers in experimentally induced hyperglycemic rat model by streptozocin. PLoS ONE 17:e0271138. https://doi.org/10.1371/journal.pone.0271138
Article CAS PubMed PubMed Central Google Scholar
Arrieta-Cruz I, Knight CM, Gutiérrez-Juárez R (2015) Acute exposure of the mediobasal hypothalamus to amyloid-β25-35 perturbs hepatic glucose metabolism. J Alzheimers Dis 46:843–848. https://doi.org/10.3233/JAD-131865
Article CAS PubMed Google Scholar
Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888
Bhargava SK, Singh TG, Mannan A et al (2022a) Pharmacological evaluation of Thuja occidentalis for the attenuation of nephropathy in streptozotocin-induced diabetes rats. Obesity Medicine 31:100391. https://doi.org/10.1016/j.obmed.2022.100391
Bhargava SK, Singh TG, Mannan A et al (2022b) Pharmacological evaluation of Thuja occidentalis for the attenuation of neuropathy via AGEs and TNF-α inhibition in diabetic neuropathic rats. Environ Sci Pollut Res Int 29:60542–60557. https://doi.org/10.1007/s11356-022-20106-3
Article CAS PubMed Google Scholar
Cai Y, Liu J, Wang B et al (2022) Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front Immunol 13:856376. https://doi.org/10.3389/fimmu.2022.856376
Article CAS PubMed PubMed Central Google Scholar
Chien M-Y, Ku Y-H, Chang J-M et al (2016) Effects of herbal mixture extracts on obesity in rats fed a high-fat diet. J Food Drug Anal 24:594–601. https://doi.org/10.1016/j.jfda.2016.01.012
Article PubMed PubMed Central Google Scholar
de la Monte SM (2012) Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease. Drugs 72:49–66. https://doi.org/10.2165/11597760-000000000-00000
Article PubMed PubMed Central Google Scholar
Feldman EL, Nave K-A, Jensen TS, Bennett DLH (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93:1296–1313. https://doi.org/10.1016/j.neuron.2017.02.005
Article CAS PubMed PubMed Central Google Scholar
Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protocol 1:e78. https://doi.org/10.1002/cpz1.78
Garg N, Mannan A, Mohan M, Singh TG (2025) Therapeutic efficacy of hydroalcoholic extract of Euphorbia prostrata Aiton in NAD-STZ-induced diabetic nephropathy: a multifaceted intervention targeting oxidative stress and inflammation. Obes Med 54:100579. https://doi.org/10.1016/j.obmed.2024.100579
Gonfloni S, Maiani E, Di Bartolomeo C et al (2012) Oxidative stress, DNA damage, and c-Abl signaling: at the crossroad in neurodegenerative diseases? Int J Cell Biol 2012:683097. https://doi.org/10.1155/2012/683097
Article CAS PubMed PubMed Central Google Scholar
González-Martín A, Moyano T, Gutiérrez DA et al (2021) c-Abl regulates a synaptic plasticity-related transcriptional program involved in memory and learning. Prog Neurobiol 205:102122. https://doi.org/10.1016/j.pneurobio.2021.102122
Article CAS PubMed Google Scholar
Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766
Gottschalk S, Anderson N, Hainz C et al (2004) Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res 10:6661–6668. https://doi.org/10.1158/1078-0432.CCR-04-0039
Article CAS PubMed Google Scholar
Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752. https://doi.org/10.1007/s12035-015-9132-3
Article CAS PubMed Google Scholar
Güemes A, Georgiou P (2018) Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med 4:9. https://doi.org/10.1186/s42234-018-0009-4
Article PubMed PubMed Central Google Scholar
Guo T, Zhang D, Zeng Y et al (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15:40. https://doi.org/10.1186/s13024-020-00391-7
Article PubMed PubMed Central Google Scholar
Gutierrez DA, Vargas LM, Chandia-Cristi A et al (2019) c-Abl deficiency provides synaptic resiliency against Aβ-oligomers. Front Cell Neurosci 13:526. https://doi.org/10.3389/fncel.2019.00526
Article CAS PubMed PubMed Central Google Scholar
Gutiérrez DA, Chandía-Cristi A, Yáñez MJ et al (2022) c-Abl kinase at the crossroads of healthy synaptic remodeling and synaptic dysfunction in neurodegenerative diseases. Neural Regen Res 18:237–243. https://doi.org/10.4103/1673-5374.346540
Article CAS PubMed Central Google Scholar
Hamzé R, Delangre E, Tolu S et al (2022) Type 2 diabetes mellitus and Alzheimer’s disease: shared molecular mechanisms and potential common therapeutic targets. Int J Mol Sci 23:15287. https://doi.org/10.3390/ijms232315287
Article CAS PubMed PubMed Central Google Scholar
Iheagwam FN, Iheagwam OT, Onuoha MK et al (2022) Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats. Sci Rep 12:10711. https://doi.org/10.1038/s41598-022-15114-9
Article CAS PubMed PubMed Central Google Scholar
Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care 14:115–120. https://doi.org/10.1097/MCO.0b013e328342991c
Article CAS PubMed PubMed Central Google Scholar
Karunakaran U, Elumalai S, Moon JS, Won KC (2022) c-Abl tyrosine kinase inhibition attenuate oxidative stress-induced pancreatic β-Cell dysfunction via glutathione antioxidant system. Transl Res 249:74–87. https://doi.org/10.1016/j.trsl.2022.06.007
Article CAS PubMed Google Scholar
Kaur N, Kishore L, Farooq SA et al (2023) Cucurbita pepo seeds improve peripheral neuropathy in diabetic rats by modulating the inflammation and oxidative stress in rats. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-023-28339-6
Article PubMed PubMed Central Google Scholar
Kelliny S, Deng I, Zhou X-F, Bobrovskaya L (2023) Chapter 2 - Sporadic Alzheimer’s disease animal model using streptozotocin and APP/PS1 mice. In: Martin CR, Patel VB, Preedy VR (eds) Handbook of Animal Models in Neurological Disorders. Academic Press, pp 17–30
Kim H-G (2019) Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ J Med 36:183–191. https://doi.org/10.12701/yujm.2019.00255
Comments (0)