Neuroprotective effects of resveratrol and sodium valproate in penicillin-induced epilepsy model

Acungil ZK, Delibaş EAÖ (2022) Resveratrol, oxinflammation and epilepsy. J TOGU Heal Sci 2(1):71–87

Google Scholar 

Adewole KE (2023) Exploring phytotherapeutic approach in the management of valproic acid-induced toxicity. Adv Tradit Med 23(2):347–367

Google Scholar 

Akdogan I, Goksin N (2011) Underlying mechanisms of epilepsy. In: Kaneez FS (ed) Experimental epilepsy models andmorphologic alterations of experimental epilepsy models in brain and hippocampus, 1 st ed. InTechOpen, pp 269–282.

Aksöz E (2018) The role of neuroinflammation in epileptogenesis and targets for neuroinflammation in antiepileptogenic therapy. SDU J Health Sci 9(2):130–135

Google Scholar 

Ambrogini PTP (2019) Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biophys Acta Mol Basis Dis 1865(6):1098–1112

Google Scholar 

Aronica E, Bauer S, Bozzi Y et al (2017) Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58:27–38

Google Scholar 

Ates OC (2007) Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 294:137–144

Google Scholar 

Baur JA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

Google Scholar 

Brahmane RI, Wanmali VV, Pathak SS, Salwe KJ (2010) Role of cinnarizine and nifedipine on anticonvulsant effect of sodium valproate and carbamazepine in maximal electroshock and pentylenetetrazole model of seizures in mice. J Pharmacol Pharmacother 1(2):78–81

Google Scholar 

Brennan GP, Henshall DC (2018) microRNAs in the pathophysiology of epilepsy. Neurosci Lett 667:47–52

Google Scholar 

Brisdelli FD (2009) Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab 10(6):530–546

Google Scholar 

Buyukguzel E (2013) Biochemical and molecular mechanism of protein oxidation. Karaelmas Sci Eng J 3(1):40–51

Google Scholar 

Castro OW, Upadhya D, Kodali M, Shetty AK (2017) Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfunction—are we there yet? Front Neurol 8:603

Google Scholar 

Chang TC (2000) Protein oxidation and turnover. J Biomed Sci 7:357–363

Google Scholar 

Chanvitayapongs S, Draczynska-Lusiak B, Sun AY (1997) Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. NeuroReport 8(6):1499–1502

Google Scholar 

Chen JF (2017) Effect of VPA retard tablet on the oxidative stress system and cognitive function in patients with epilepsy. J Hainan Med Univ 23(6):139–141

Google Scholar 

Chen JY, Chu LW, Cheng KI et al (2018) Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci Rep 8(1):16457

Google Scholar 

Chuang YC, Chen SD, Hsu CY, Chen SF, Chen NC, Jou SB (2019) Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1α signaling pathway. Int J Mol Sci 20(4):998

Google Scholar 

Dai S, Zheng Y, Wang Y, Chen Z (2021) HMGB1, neuronal excitability, and epilepsy. Acta Epileptologica 3(1):13. https://doi.org/10.1186/s42494-021-00048-y

Devi P, Pillai K, Vohora D (2006) Facilitation action of N-acetylcysteine on the anticonvulsant effect of VPA in mice. Basic Clin Pharmacol Toxicol 98:521–522

Google Scholar 

Eastman CL (2020) Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology 172:107907

Google Scholar 

Faggi LP (2018) Synergistic association of valproate and resveratrol reduces brain injury in ischemic stroke. Int J Mol Sci 19(1):172

Google Scholar 

Fisher RS (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4):475–482

Google Scholar 

Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122(6):877–902

Google Scholar 

Geronzi UL (2018) Oxidative stress in epilepsy. Expert Rev Neurother 18(5):427–434

Google Scholar 

Grabarczyk M, Justyńska W, Czpakowska J et al (2024) Role of plant phytochemicals: resveratrol, curcumin, luteolin and quercetin in demyelination, neurodegeneration, and epilepsy. Antioxidants 13(11):1364

Google Scholar 

Gupta YK (2002) Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav 71(1–2):245–249

Google Scholar 

Hawkins CL (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta Bioenerg 1504(2–3):196–219

Google Scholar 

Ichiyama TO (2000) Sodium valproate inhibits production of TNF-α and IL-6 and activation of NF-κB. Brain Res 857(1–2):246–251

Google Scholar 

Ilhan A, Gurel A, Armutcu F et al (2004) Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta 340(1–2):153–162

Google Scholar 

Joseph S, David J, Joseph T (1998) Additive anticonvulsant effect of flunarizine and sodium valproate on electroshock and chemoshock induced seizures in mice. Indian J Physiol Pharmacol 42:383–388

Google Scholar 

Kasap Acungil Z, Tayhan SE, Tosun NG, Nacar T (2025) The interactions of resveratrol and sodium valproate on penicillin-induced epilepsy model: electrophysiological and molecular study. Mol Neurobiol 62:3673–3683

Google Scholar 

Kim HJ, Kim IK, Song W, Lee J, Park S (2013) The synergic effect of regular exercise and resveratrol on kainate-induced oxidative stress and seizure activity in mice. Neurochem Res 38:117–122

Google Scholar 

Lee J, Chou C, Cho N et al (2014) Post-insult valproate treatment potentially improved functional recovery in patients with acute middle cerebral artery infarction. Am J Transl Res 6:820–830

Google Scholar 

Li W, Wu J, Zeng Y, Zheng W (2023) Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 14:1269241

Google Scholar 

Litovchenko AV (2021) Markers of neuroinflammation and apoptosis in the temporal lobe of patients with drug-resistant epilepsy. J Evol Biochem Phys 57(5):1040–1049

Google Scholar 

Liu TZ (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):1–9

Google Scholar 

Liu Z, Zhu L, Sheng LP et al (2023) A pilot study on the effects of early use of valproate sodium on neuroinflammation after traumatic brain injury. Chin J Contemp Pediatr 25(3):253–258

Google Scholar 

Lu S (2015) The role and potential mechanism of resveratrol in the prevention and control of epilepsy. Future Med Chem 7(15):2005–2018

Google Scholar 

Łukawski K (2023) Oxidative stress and neurodegeneration in animal models of seizures and epilepsy. Antioxidants 12(5):1049

Google Scholar 

Ma CW (2015) Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochim Biophys Sin 47(3):207–213

Google Scholar 

Marchi NGT (2014) Inflammatory pathways of seizure disorders. Trends Neurosci 37(2):55–65

Google Scholar 

McElroy PB, Liang LP, Day BJ, Patel M (2017) Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp Neurol 298:13–22

Google Scholar 

Meng X, Wang F, Li C (2014) Resveratrol is neuroprotective and improves cognition in pentylenetetrazole-kindling model of epilepsy in rats. Indian J Pharm Sci 76:125–131

Google Scholar 

Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J (2021) Anti-inflammatory action and mechanisms of resveratrol. Molecules 26(1):229

Google Scholar 

Meng Q, Li J, Wang C, Shan A (2023) Biological function of resveratrol and its application in animal production: a review. J Anim Sci Biotechnol 14(1):25

Google Scholar 

Mishra VS (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5:17807

Google Scholar 

Mokni ME (2007) Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 32:981–987

Google Scholar 

Öktem SÖ (2001) Apoptozisin Önemi. Toraks Dergisi 2(1):91–95

Google Scholar 

Ourique GM, Pês TS, Saccol EM et al (2016) Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats. Exp Toxicol Pathol 68(8):435–443

Google Scholar 

Pahuja M, Mehla J, Kumar Gupta Y (2012) Anticonvulsant and antioxidative activity of hydroalcoholic extract of tuber of Orchis mascula in pentylenetetrazole and maximal electroshock induced seizures in rats. J Ethnopharmacol 142:23–27

Google Scholar 

Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962

Google Scholar 

Paudel YN (2019) High mobility group box 1 (HMGB 1) as a novel frontier in epileptogenesis: from pathogenesis to therapeutic approaches. J Neurochem 15(5):542–557

Google Scholar 

Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Vezzani A (2019) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 142(7):e39

Google Scholar 

Paxinos G, Watson C (1982). The rat brain in the stereotaxic coordinates. Academic Press, London 3rd edn.

Pitkänen A, Kharatishvili I, Karhunen H et al (2007) Epileptogenesis in experimental models. Epilepsia 48:13–20

Google Scholar 

Punnakkal P, Dominic D (2018) NMDA receptor GluN2 subtypes control epileptiform events in the hippocampus. Neuromolecular Med 20:90–96

Google Scholar 

Ravizza TT (2018) High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun 72:14–21

Google Scholar 

Romano AD (2010) Oxidative stress and aging. J Nephrol 23(15):29–36

Google Scholar 

Siddiqui MA, Asad M, Akhter J et al (2022) Resveratrol-loaded glutathione-coated collagen nanoparticles attenuate acute seizures by inhibiting HMGB1 and TLR-4 in the hippocampus of mice. ACS Chem Neurosci 13(8):1342–1354. https://doi.org/10.1021/acschemneuro.2c00171

Singel KL, Segal BH (2016) NOX2-dependent regulation of inflammation. Clin Sci 130(7):479–490

Google Scholar 

Sinha KC (2002) Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci 71(6):655–665

Google Scholar 

Smith P (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

Google Scholar 

Sudha KR (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303(1–2):19–24

Google Scholar 

Tadolini B, Juliano C, Piu L et al (2000) Resveratrol inhibition of lipid peroxidation. Free Radic Res 33(1):105–114

Google Scholar 

Taskiran M, Taşdemir A (2023) An involvement of COX and 5-LOX pathways in the penicillin- and pentylenetetrazole (PTZ)-induced epilepsy models. Fundam Clin Pharmacol 37(1):85–93

Google Scholar 

Taskiran M, Tasdemir A, Ayyıldız N, Ayyıldız M, Agar E (2019) The effect of serotonin on penicillin-induced epileptiform activity. Int J Neurosci 129(7):687–697

Google Scholar 

Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):31–40

Google Scholar 

Vishwakarma S, Singh S, Singh TG (2022) Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 49(2):1437–1452

Comments (0)

No login
gif