Contrast medium dose optimization in the era of multi-energy CT

Schöckel L, Jost G, Seidensticker P, Lengsfeld P, Palkowitsch P, Pietsch H. Developments in X-ray contrast media and the potential impact on computed tomography. Invest Radiol. 2020;55:592–7.

Article  PubMed  Google Scholar 

Mitchell AM, Kline JA, Jones AE, Tumlin JA. Major adverse events one year after acute kidney injury after contrast-enhanced computed tomography. Ann Emerg Med. 2015;66:267-274.e264.

Article  PubMed  Google Scholar 

McDonald RJ, McDonald JS, Carter RE, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273:714–25.

Article  PubMed  Google Scholar 

Lee C-C, Chan Y-L, Wong Y-C, et al. Contrast-enhanced CT and acute kidney injury: risk stratification by diabetic status and kidney function. Radiology. 2023;307: e222321.

Article  PubMed  Google Scholar 

Gorelik Y, Bloch-Isenberg N, Yaseen H, Heyman SN, Khamaisi M. Acute kidney injury after radiocontrast-enhanced computerized tomography in hospitalized patients with advanced renal failure: a propensity-score-matching analysis. Invest Radiol. 2020;55:677–87.

Article  CAS  PubMed  Google Scholar 

Su T-H, Hsieh C-H, Chan Y-L, et al. Intravenous CT contrast media and acute kidney injury: a multicenter emergency department–based study. Radiology. 2021;301:571–81.

Article  PubMed  Google Scholar 

Obed M, Gabriel MM, Dumann E, Vollmer Barbosa C, Weißenborn K, Schmidt BMW. Risk of acute kidney injury after contrast-enhanced computerized tomography: a systematic review and meta-analysis of 21 propensity score-matched cohort studies. Eur Radiol. 2022;32:8432–42.

Article  PubMed  PubMed Central  Google Scholar 

Calle-Toro J, Viteri B, Ballester L, et al. Risk of acute kidney injury following contrast-enhanced CT in a cohort of 10 407 children and adolescents. Radiology. 2022. https://doi.org/10.1148/radiol.210816:210816.

Article  PubMed  Google Scholar 

Gupta S, Motwani SS, Seitter RH, et al. Development and validation of a risk model for predicting contrast-associated acute kidney injury in patients with cancer: evaluation in Over 46,000 CT scans. AJR Am J Roentgenol. 2023. https://doi.org/10.2214/ajr.23.29139.

Article  PubMed  Google Scholar 

Davenport MS, Parikh KR, Mayo-Smith WW, Israel GM, Brown RK, Ellis JH. Effect of fixed-volume and weight-based dosing regimens on the cost and volume of administered iodinated contrast material at abdominal CT. J Am Coll Radiol. 2017;14:359–70.

Article  PubMed  Google Scholar 

Dekker HM, Stroomberg GJ, Prokop M. Tackling the increasing contamination of the water supply by iodinated contrast media. Insights Imaging. 2022;13:30.

Article  PubMed  PubMed Central  Google Scholar 

Grist TM, Canon CL, Fishman EK, Kohi MP, Mossa-Basha M. Short-, mid-, and long-term strategies to manage the shortage of iohexol. Radiology. 2022;304:289–93.

Article  PubMed  Google Scholar 

Kirchner J, Kickuth R, Laufer U, Noack M, Liermann D. Optimized enhancement in helical CT: experiences with a real-time bolus tracking system in 628 patients. Clin Radiol. 2000;55:368–73.

Article  CAS  PubMed  Google Scholar 

Dorio PJ, Lee FT Jr, Henseler KP, et al. Using a saline chaser to decrease contrast media in abdominal CT. AJR Am J Roentgenol. 2003;180:929–34.

Article  PubMed  Google Scholar 

Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV. Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology. 1995;195:353–7.

Article  CAS  PubMed  Google Scholar 

Awai K, Hiraishi K, Hori S. Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology. 2004;230:142–50.

Article  PubMed  Google Scholar 

Awai K, Kanematsu M, Kim T, et al. The optimal body size index with which to determine iodine dose for hepatic dynamic CT: a prospective multicenter study. Radiology. 2016;278:773–81.

Article  PubMed  Google Scholar 

Wuest W, Anders K, Schuhbaeck A, et al. Dual source multidetector CT-angiography before Transcatheter Aortic Valve Implantation (TAVI) using a high-pitch spiral acquisition mode. Eur Radiol. 2012;22:51–8.

Article  CAS  PubMed  Google Scholar 

Kumamaru KK, Steigner ML, Soga S, et al. Coronary enhancement for prospective ECG-gated single R-R axial 320-MDCT angiography: comparison of 60- and 80-mL iopamidol 370 injection. AJR Am J Roentgenol. 2011;197:844–50.

Article  PubMed  Google Scholar 

Nakayama Y, Awai K, Funama Y, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol. 2006;187:W490-497.

Article  PubMed  Google Scholar 

Nakaura T, Awai K, Maruyama N, et al. Abdominal dynamic CT in patients with renal dysfunction: contrast agent dose reduction with low tube voltage and high tube current-time product settings at 256-detector row CT. Radiology. 2011;261:467–76.

Article  PubMed  Google Scholar 

McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276:637–53.

Article  PubMed  Google Scholar 

Rajiah P, Parakh A, Kay F, Baruah D, Kambadakone AR, Leng S. Update on multienergy CT: physics, principles, and applications. Radiographics. 2020;40:1284–308.

Article  PubMed  Google Scholar 

Mileto A, Ananthakrishnan L, Morgan DE, Yeh BM, Marin D, Kambadakone AR. Clinical implementation of dual-energy CT for gastrointestinal imaging. AJR Am J Roentgenol. 2021;217:651–63.

Article  PubMed  Google Scholar 

Greffier J, Villani N, Defez D, Dabli D, Si-Mohamed S. Spectral CT imaging: technical principles of dual-energy CT and multi-energy photon-counting CT. Diagn Interv Imaging. 2023;104:167–77.

Article  PubMed  Google Scholar 

Nakamura Y, Higaki T, Kondo S, Kawashita I, Takahashi I, Awai K. An introduction to photon-counting detector CT (PCD CT) for radiologists. Jpn J Radiol. 2023;41:266–82.

PubMed  Google Scholar 

Nakayama Y, Awai K, Funama Y, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology. 2005;237:945–51.

Article  PubMed  Google Scholar 

Funama Y, Awai K, Nakayama Y, et al. Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique: phantom study. Radiology. 2005;237:905–10.

Article  PubMed  Google Scholar 

Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012;264:445–54.

Article  PubMed  Google Scholar 

Nagayama Y, Tanoue S, Tsuji A, et al. Application of 80-kVp scan and raw data-based iterative reconstruction for reduced iodine load abdominal-pelvic CT in patients at risk of contrast-induced nephropathy referred for oncological assessment: effects on radiation dose, image quality and renal function. Br J Radiol. 2018;91:20170632.

Article  PubMed  PubMed Central  Google Scholar 

Yoshida K, Nagayama Y, Funama Y, et al. Low tube voltage and deep-learning reconstruction for reducing radiation and contrast medium doses in thin-slice abdominal CT: a prospective clinical trial. Eur Radiol. 2024;34:7386–96.

Article  CAS  PubMed  Google Scholar 

Taguchi N, Oda S, Utsunomiya D, et al. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy. Eur Radiol. 2016. https://doi.org/10.1007/s00330-016-4435-y.

Article  PubMed  Google Scholar 

Noda Y, Kanematsu M, Goshima S, et al. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination of low-tube-voltage and adaptive statistical iterative reconstruction. Eur J Radiol. 2015;84:11–8.

Article  PubMed  Google Scholar 

Goshima S, Kanematsu M, Noda Y, et al. Minimally required iodine dose for the detection of hypervascular hepatocellular carcinoma on 80-kVp CT. AJR Am J Roentgenol. 2016;206:518–25.

Comments (0)

No login
gif