Peters NHGM, Borel Rinkes IHM, Zuithoff NPA, Mali WPTM, Moons KGM, Peeters PHM. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology. 2008;246:116–24. https://doi.org/10.1148/radiol.2461061298.
Kataoka M, Honda M, Sagawa H, Ohashi A, Sakaguchi R, Hashimoto H, et al. Ultrafast dynamic contrast-enhanced MRI of the breast: from theory to practice. J Magn Reson Imaging. 2024;60(2):401–16. https://doi.org/10.1002/jmri.29082.
Kataoka M, Honda M, Ohashi A, Yamaguchi K, Mori N, Goto M, et al. Ultrafast dynamic contrast-enhanced MRI of the breast: how is it used? Magn Reson Med Sci. 2022;21:83–94. https://doi.org/10.2463/mrms.rev.2021-0157.
Article CAS PubMed PubMed Central Google Scholar
Amitai Y, Freitas VAR, Golan O, Kessner R, Shalmon T, Neeman R, et al. The diagnostic performance of ultrafast MRI to differentiate benign from malignant breast lesions: a systematic review and meta-analysis. Eur Radiol. 2024;60(2):401–16. https://doi.org/10.1007/s00330-024-10690-y.
Youn I, Biswas D, Hippe DS, Winter AM, Kazerouni AS, Javid SH, et al. Diagnostic performance of point-of-care apparent diffusion coefficient measures to reduce biopsy in breast lesions at MRI: clinical validation. Radiology. 2024;310: e232313. https://doi.org/10.1148/radiol.232313.
Mann RM, Mus RD, Van Zelst J, Geppert C, Karssemeijer N, Platel B. A novel approach to contrast-enhanced breast magnetic resonance imaging for screening: high-resolution ultrafast dynamic imaging. Invest Radiol. 2014;49:579–85. https://doi.org/10.1097/RLI.0000000000000057.
Mus RD, Borelli C, Bult P, Weiland E, Karssemeijer N, Barentsz JO, et al. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions. Eur J Radiol. 2017;89:90–6. https://doi.org/10.1016/j.ejrad.2017.01.020.
Honda M, Kataoka M, Iima M, Miyake KK, Ohashi A, Kishimoto AO, et al. Background parenchymal enhancement and its effect on lesion detectability in ultrafast dynamic contrast-enhanced MRI. Eur J Radiol. 2020;129:108984. https://doi.org/10.1016/j.ejrad.2020.108984.
Nissan N, Anaby D, Mahameed G, Bauer E, Moss Massasa EE, Menes T, et al. Ultrafast DCE-MRI for discriminating pregnancy-associated breast cancer lesions from lactation related background parenchymal enhancement. Eur Radiol. 2023;33(11):8122–31. https://doi.org/10.1007/s00330-023-09805-8.
Article CAS PubMed Google Scholar
Kim YS, Yun BL, Chu AJ, Lee SH, Shin HJ, Kim SM, et al. Background breast parenchymal signal during menstrual cycle on diffusion-weighted MRI: a prospective study in healthy premenopausal women. Korean J Radiol. 2024;25:511–7. https://doi.org/10.3348/kjr.2023.1189.
Article PubMed PubMed Central Google Scholar
Saranathan M, Rettmann DW, Hargreaves BA, Lipson JA, Daniel BL. Variable spatiotemporal resolution three-dimensional Dixon sequence for rapid dynamic contrast-enhanced breast MRI: variable spatiotemporal resolution breast DCEMRI. J Magn Reson Imaging. 2014;40:1392–9. https://doi.org/10.1002/jmri.24490.
Dougherty L, Isaac G, Rosen MA, Nunes LW, Moate PJ, Boston RC, et al. High frame-rate simultaneous bilateral breast DCE-MRI. Magn Reson Med. 2007;57:220–5. https://doi.org/10.1002/mrm.21114.
Song HK, Dougherty L. k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med. 2000;44:825–32.
Article CAS PubMed Google Scholar
Tudorica LA, Oh KY, Roy N, Kettler MD, Chen Y, Hemmingson SL, et al. A feasible high spatiotemporal resolution breast DCE-MRI protocol for clinical settings. Magn Reson Imaging. 2012;30:1257–67. https://doi.org/10.1016/j.mri.2012.04.009.
Article PubMed PubMed Central Google Scholar
Willinek WA, Hadizadeh DR, von Falkenhausen M, Urbach H, Hoogeveen R, Schild HH, et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging. 2008;27:1455–60. https://doi.org/10.1002/jmri.21354.
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95. https://doi.org/10.1002/mrm.21391.
Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI: iGRASP: iterative golden-angle RAdial sparse parallel MRI. Magn Reson Med. 2014;72:707–17. https://doi.org/10.1002/mrm.24980.
Yamaguchi K, Ichinohe K, Iyadomi M, Fujiki K, Yoshinaga Y, Egashira R, et al. Abbreviated and ultrafast dynamic contrast-enhanced (DCE) MR imaging. Magn Reson Med Sci. 2025;43(1):43–50. https://doi.org/10.2463/mrms.rev.2024-0158.
Van Zelst JCM, Vreemann S, Witt HJ, Gubern-Merida A, Dorrius MD, Duvivier K, et al. Multireader study on the diagnostic accuracy of ultrafast breast magnetic resonance imaging for breast cancer screening. Invest Radiol. 2018;53:579–86. https://doi.org/10.1097/RLI.0000000000000494.
Mori N, Sheth D, Abe H. Nonmass enhancement breast lesions: diagnostic performance of kinetic assessment on ultrafast and standard dynamic contrast-enhanced MRI in comparison with morphologic evaluation. AJR Am J Roentgenol. 2020;215:511–8. https://doi.org/10.2214/AJR.19.21920.
Vreemann S, Rodriguez-Ruiz A, Nickel D, Heacock L, Appelman L, Van Zelst J, et al. Compressed sensing for breast MRI: resolving the trade-off between spatial and temporal resolution. Invest Radiol. 2017;52:574–82. https://doi.org/10.1097/RLI.0000000000000384.
Honda M, Kataoka M, Iima M, Ota R, Okazawa A, Fukushima Y, et al. Institutional variability in ultrafast breast MR imaging: comparing compressed sensing and view sharing techniques with different patient populations and contrast injection protocols. Magn Reson Med Sci. 2025. https://doi.org/10.2463/mrms.mp.2024-0152.
Ohashi A, Kataoka M, Iima M, Honda M, Ota R, Urushibata Y, et al. Comparison of ultrafast dynamic contrast-enhanced (DCE) MRI with conventional DCE MRI in the morphological assessment of malignant breast lesions. Diagnostics. 2023;13:1105. https://doi.org/10.3390/diagnostics13061105.
Article PubMed PubMed Central Google Scholar
Ohashi A, Kataoka M, Iima M, Honda M, Ota R, Urushibata Y, et al. A multiparametric approach to predict triple-negative breast cancer including parameters derived from ultrafast dynamic contrast-enhanced MRI. Eur Radiol. 2023;33(11):8132–41. https://doi.org/10.1007/s00330-023-09730-w.
Article CAS PubMed Google Scholar
Baltzer P, Mann RM, Iima M, Sigmund EE, Clauser P, Gilbert FJ, et al. Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI international breast diffusion-weighted imaging working group. Eur Radiol. 2020;30:1436–50. https://doi.org/10.1007/s00330-019-06510-3.
Singer L, Wilmes LJ, Saritas EU, Shankaranarayanan A, Proctor E, Wisner DJ, et al. High-resolution diffusion-weighted magnetic resonance imaging in patients with locally advanced breast cancer. Acad Radiol. 2012;19:526–34. https://doi.org/10.1016/j.acra.2011.11.003.
Takeuchi M, Higaki A, Kojima Y, Ono K, Maruhisa T, Yokoyama T, et al. Comparative analysis of image quality and diagnostic performance among SS-EPI, MS-EPI, and rFOV DWI in bladder cancer. Jpn J Radiol. 2024;43(4):666–75. https://doi.org/10.1007/s11604-024-01694-1.
Article PubMed PubMed Central Google Scholar
Tamada T, Kido A, Ueda Y, Takeuchi M, Kanki A, Neelavalli J, et al. Comparison of single-shot EPI and multi-shot EPI in prostate DWI at 3.0 T. Sci Rep. 2022;12:16070. https://doi.org/10.1038/s41598-022-20518-8.
Article CAS PubMed PubMed Central Google Scholar
Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition: EPI with parallel imaging and 2D reacquisition. Magn Reson Med. 2009;62:468–75. https://doi.org/10.1002/mrm.22024.
Comments (0)