Whole-tumor histogram analysis of synthetic MRI relaxation maps for nasopharyngeal carcinoma: correlations with histopathologic components

Chen YP, Chan A, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80.

PubMed  Google Scholar 

Wong K, Hui EP, Lo KW, et al. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol. 2021;18(11):679–95.

CAS  PubMed  Google Scholar 

Lee AW, Ma BB, Ng WT, Chan AT. Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol. 2015;33(29):3356–64.

PubMed  Google Scholar 

Liu Z, Chen Y, Su Y, Hu X, Peng X. Nasopharyngeal carcinoma: clinical achievements and considerations among treatment options. Front Oncol. 2021;11:635737.

CAS  PubMed  PubMed Central  Google Scholar 

Pan J, Zang L, Zhang Y, et al. Early changes in apparent diffusion coefficients predict radiosensitivity of human nasopharyngeal carcinoma xenografts. Laryngoscope. 2012;122(4):839–43.

PubMed  Google Scholar 

King AD, Vlantis AC, Bhatia KS, et al. Primary nasopharyngeal carcinoma: diagnostic accuracy of MR imaging versus that of endoscopy and endoscopic biopsy. Radiology. 2011;258(2):531–7.

PubMed  Google Scholar 

Zhao Y, Shen L, Huang X, et al. High expression of Ki-67 acts a poor prognosis indicator in locally advanced nasopharyngeal carcinoma. Biochem Biophys Res Commun. 2017;494(1–2):390–6.

CAS  PubMed  Google Scholar 

Rasmussen JH, Olin AB, Lelkaitis G, et al. Intratumor heterogeneity is biomarker specific and challenges the association with heterogeneity in multimodal functional imaging in head and neck squamous cell carcinoma. Eur J Radiol. 2021;139:109668.

PubMed  Google Scholar 

Warntjes JB, Leinhard OD, West J, Lundberg P. Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med. 2008;60(2):320–9.

CAS  PubMed  Google Scholar 

Montejo C, Laredo C, Llull L, et al. Synthetic MRI in subarachnoid haemorrhage. Clin Radiol. 2021;76(10):717–85.

Google Scholar 

Gao W, Yang Q, Li X, et al. Synthetic MRI with quantitative mappings for identifying receptor status, proliferation rate, and molecular subtypes of breast cancer. Eur J Radiol. 2022;148:110168.

PubMed  Google Scholar 

Matsuda M, Fukuyama N, Matsuda T, et al. Utility of synthetic MRI in predicting pathological complete response of various breast cancer subtypes prior to neoadjuvant chemotherapy. Clin Radiol. 2022;77(11):855–63.

CAS  PubMed  Google Scholar 

Li Q, Xiao Q, Yang M, et al. Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer. Eur J Radiol. 2021;139:109697.

PubMed  Google Scholar 

Cui Y, Han S, Liu M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI. J Magn Reson Imaging. 2020;52(2):552–64.

PubMed  Google Scholar 

Li S, Liu J, Zhang F, et al. Novel T2 mapping for evaluating cervical cancer features by providing quantitative T2 maps and synthetic morphologic images: a preliminary study. J Magn Reson Imaging. 2020;52(6):1859–69.

PubMed  Google Scholar 

Lian S, Liu H, Meng T, Ma L, Zeng W, Xie C. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy. Eur Radiol. 2023;33(3):1737–45.

CAS  PubMed  Google Scholar 

Cai Q, Wen Z, Huang Y, et al. Investigation of synthetic magnetic resonance imaging applied in the evaluation of the tumor grade of bladder cancer. J Magn Reson Imaging. 2021;54(6):1989–97.

PubMed  Google Scholar 

Meng T, He H, Liu H, et al. Investigation of the feasibility of synthetic MRI in the differential diagnosis of non-keratinising nasopharyngeal carcinoma and benign hyperplasia using different contoured methods for delineation of the region of interest. Clin Radiol. 2021;76(3):238–9.

Google Scholar 

Zhang H, Zhao J, Dai J, Chang J, Hu S, Wang P. Synthetic MRI quantitative parameters in discriminating stage T1 nasopharyngeal carcinoma and benign hyperplasia: combination with morphological features. Eur J Radiol. 2024;170:111264.

PubMed  Google Scholar 

Zhang H, Hu L, Qin F, et al. Synthetic MRI and diffusion-weighted imaging for differentiating nasopharyngeal lymphoma from nasopharyngeal carcinoma: combination with morphological features. Br J Radiol. 2024;97(1159):1278–85.

PubMed  PubMed Central  Google Scholar 

Wang P, Hu S, Wang X, et al. Synthetic MRI in differentiating benign from metastatic retropharyngeal lymph node: combination with diffusion-weighted imaging. Eur Radiol. 2023;33(1):152–61.

PubMed  Google Scholar 

Yang F, Wei H, Li X, et al. Pretreatment synthetic magnetic resonance imaging predicts disease progression in nonmetastatic nasopharyngeal carcinoma after intensity modulation radiation therapy. Insights Imaging. 2023;14(1):59.

CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Dai J, Zhao J, et al. Synthetic MRI combined with clinicopathological characteristics for pretreatment prediction of chemoradiotherapy response in advanced nasopharyngeal carcinoma. Korean J Radiol. 2025;26(2):135–45.

PubMed  PubMed Central  Google Scholar 

Xiao Z, Tang Z, Zhang J, et al. Whole-tumor histogram analysis of monoexponential and advanced diffusion-weighted imaging for sinonasal malignant tumors: correlations with histopathologic features. J Magn Reson Imaging. 2020;51(1):273–85.

PubMed  Google Scholar 

Hectors SJ, Semaan S, Song C, et al. Advanced diffusion-weighted imaging modeling for prostate cancer characterization: correlation with quantitative histopathologic tumor tissue composition-A hypothesis-generating study. Radiology. 2018;286(3):918–28.

PubMed  Google Scholar 

Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.

PubMed  PubMed Central  Google Scholar 

Meng T, He N, He H, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI. Cancer Imaging. 2020;20(1):88.

PubMed  PubMed Central  Google Scholar 

Gao Z, Xu X, Sun H, et al. The value of synthetic magnetic resonance imaging in the diagnosis and assessment of prostate cancer aggressiveness. Quant Imaging Med Surg. 2024;14(8):5473–89.

PubMed  PubMed Central  Google Scholar 

Korkolopoulou P, Konstantinidou AE, Kavantzas N, et al. Morphometric microvascular characteristics predict prognosis in superficial and invasive bladder cancer. Virchows Arch. 2001;438(6):603–11.

CAS  PubMed  Google Scholar 

Li X, Wang P, Li D, et al. Intravoxel incoherent motion MR imaging of early cervical carcinoma: correlation between imaging parameters and tumor-stroma ratio. Eur Radiol. 2018;28(5):1875–83.

PubMed  Google Scholar 

Driessen JP, Caldas-Magalhaes J, Janssen LM, et al. Diffusion-weighted MR imaging in laryngeal and hypopharyngeal carcinoma: association between apparent diffusion coefficient and histologic findings. Radiology. 2014;272(2):456–63.

PubMed  Google Scholar 

Yang F, Li Y, Lei H, et al. Histogram analysis of synthetic magnetic resonance imaging: correlations with histopathological factors in head and neck squamous cell carcinoma. Eur J Radiol. 2023;160:110715.

PubMed  Google Scholar 

Yang F, Li X, Li Y, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors in nasopharyngeal carcinoma. Eur Radiol. 2023;33(8):5344–54.

CAS  PubMed  Google Scholar 

Jakobsen I, Kaalhus O, Lyng H, Rofstad EK. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging. Br J Cancer. 1995;71(3):456–61.

CAS  PubMed  PubMed Central  Google Scholar 

O’Connor JP, Naish JH, Jackson A, et al. Comparison of normal tissue R1 and R*2 modulation by oxygen and carbogen. Magn Reson Med. 2009;61(1):75–83.

CAS  PubMed  Google Scholar 

McSheehy PM, Weidensteiner C, Cannet C, et al. Quantified tumor t1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res. 2010;16(1):212–25.

CAS  PubMed  Google Scholar 

Gracien RM, Reitz SC, Hof SM, et al. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur Radiol. 2016;26(8):2578–86.

PubMed  Google Scholar 

Li X, Fan Z, Jiang H, et al. Synthetic MRI in breast cancer: differentiating benign from malignant lesions and predicting immunohistochemical expression status. Sci Rep. 2023;13(1):17978.

CAS  PubMed  PubMed Central  Google Scholar 

Surov A, Meyer HJ, Winter K, Richter C, Hoehn AK. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma. Oncotarget. 2018;9(34):23599–607.

PubMed  PubMed Central  Google Scholar 

Li W, Huang P, Chen DJ, Gerweck LE. Determinates of tumor response to radiation: tumor cells, tumor stroma and permanent local control. Radiother Oncol. 2014;113(1):146–9.

PubMed  PubMed Central  Google Scholar 

Choi JW, Lee D, Hyun SH, Han M, Kim JH, Lee SJ. Intratumoural heterogeneity measured using FDG PET and MRI is associated with tumour-stroma ratio and clinical outcome in head and neck squamous cell carcinoma. Clin Radiol. 2017;72(6):482–9.

Comments (0)

No login
gif