Schade DS, Shey L, Eaton RP. Cholesterol review: A metabolically important molecule. Endocr Pract. 2020;26(12):1514–23.
Gao Y, Ye S, Tang Y, Tong W, Sun S. Brain cholesterol homeostasis and its association with neurodegenerative diseases. Neurochem Int. 2023;171:105635.
Qian L, Chai A, Gelissen I, Brown A. Balancing cholesterol in the brain: from synthesis to disposal. Explor Neuroprotective Therapy. 2022;2:1–27.
Yang ST, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. The role of cholesterol in membrane fusion. Chem Phys Lipids. 2016;199:136–43.
CAS PubMed PubMed Central Google Scholar
Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73(10):1303–10.
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18(6):361–74.
CAS PubMed PubMed Central Google Scholar
Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, et al. Cellular cholesterol directly activates smoothened in Hedgehog signaling. Cell. 2016;166(5):1176–e8714.
CAS PubMed PubMed Central Google Scholar
Fuchs CD, Trauner M. Role of bile acids and their receptors in Gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 2022;19(7):432–50.
Warren T, McAllister R, Morgan A, Rai TS, McGilligan V, Ennis M et al. The interdependency and Co-Regulation of the vitamin D and cholesterol metabolism. Cells. 2021;10(8).
Janoušek J, Pilařová V, Macáková K, Nomura A, Veiga-Matos J, Silva DDD, et al. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci. 2022;59(8):517–54.
Holven KB, van Roeters J. Sex differences in lipids: A life course approach. Atherosclerosis. 2023;384:117270.
Mulder J, Tromp TR, Al-Khnifsawi M, Blom DJ, Chlebus K, Cuchel M, et al. Sex differences in diagnosis, treatment, and cardiovascular outcomes in homozygous Familial hypercholesterolemia. JAMA Cardiol. 2024;9(4):313–22.
PubMed PubMed Central Google Scholar
Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55.
CAS PubMed PubMed Central Google Scholar
Camargo N, Goudriaan A, van Deijk AF, Otte WM, Brouwers JF, Lodder H, et al. Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol. 2017;15(5):e1002605.
PubMed PubMed Central Google Scholar
Ferris HA, Perry RJ, Moreira GV, Shulman GI, Horton JD, Kahn CR. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci U S A. 2017;114(5):1189–94.
CAS PubMed PubMed Central Google Scholar
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic reprogramming of astrocytes in pathological conditions: implications for neurodegenerative diseases. Int J Mol Sci. 2024;25(16).
van Deijk AF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, et al. Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia. 2017;65(4):670–82.
Molina-Gonzalez I, Holloway RK, Jiwaji Z, Dando O, Kent SA, Emelianova K, et al. Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration. Nat Commun. 2023;14(1):3372.
CAS PubMed PubMed Central Google Scholar
Fünfschilling U, Jockusch WJ, Sivakumar N, Möbius W, Corthals K, Li S, et al. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J Neurosci. 2012;32(22):7632–45.
PubMed PubMed Central Google Scholar
Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K. Cholesterol biosynthesis and uptake in developing neurons. ACS Chem Neurosci. 2019;10(8):3671–81.
Saito K, Dubreuil V, Arai Y, Wilsch-Bräuninger M, Schwudke D, Saher G, et al. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. Proc Natl Acad Sci U S A. 2009;106(20):8350–5.
CAS PubMed PubMed Central Google Scholar
Lu F, Ferriero DM, Jiang X. Cholesterol in brain development and perinatal brain injury: more than a Building block. Curr Neuropharmacol. 2022;20(7):1400–12.
CAS PubMed PubMed Central Google Scholar
Berghoff SA, Spieth L, Sun T, Hosang L, Depp C, Sasmita AO, et al. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 2021;37(4):109889.
Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R, Wehr MC, et al. High cholesterol level is essential for Myelin membrane growth. Nat Neurosci. 2005;8(4):468–75.
Voskuhl RR, Itoh N, Tassoni A, Matsukawa MA, Ren E, Tse V, et al. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(20):10130–9.
CAS PubMed PubMed Central Google Scholar
Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse requirements for microglial survival, specification, and function revealed by Defined-Medium cultures. Neuron. 2017;94(4):759–e738.
CAS PubMed PubMed Central Google Scholar
Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci. 2021;24(1):47–60.
Vanherle S, Guns J, Loix M, Mingneau F, Dierckx T, Wouters F, et al. Extracellular vesicle-associated cholesterol supports the regenerative functions of macrophages in the brain. J Extracell Vesicles. 2023;12(12):e12394.
Nieweg K, Schaller H, Pfrieger FW. Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem. 2009;109(1):125–34.
Kister A, Kister I. Overview of Myelin, major Myelin lipids, and Myelin-associated proteins. Front Chem. 2022;10:1041961.
Korinek M, Gonzalez-Gonzalez IM, Smejkalova T, Hajdukovic D, Skrenkova K, Krusek J, et al. Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission. Sci Rep. 2020;10(1):12651.
PubMed PubMed Central Google Scholar
Lopez-Ortiz AO, Eyo UB. Astrocytes and microglia in the coordination of CNS development and homeostasis. J Neurochem. 2024;168(10):3599–614.
Ali Moussa HY, Shin KC, Ponraj J, Kim SJ, Ryu JK, Mansour S, et al. Requirement of cholesterol for Calcium-Dependent vesicle fusion by strengthening Synaptotagmin-1-Induced membrane bending. Adv Sci (Weinh). 2023;10(15):e2206823.
Guo Y, Zou G, Qi K, Jin J, Yao L, Pan Y, et al. Simvastatin impairs hippocampal synaptic plasticity and cognitive function in mice. Mol Brain. 2021;14(1):41.
CAS PubMed PubMed Central Google Scholar
Shaheen A, Richter Gorey CL, Sghaier A, Dason JS. Cholesterol is required for activity-dependent synaptic growth. J Cell Sci. 2023;136(22).
Jose M, Sivanand A, Channakeshava C. Membrane cholesterol is a critical determinant for hippocampal neuronal Polarity. Front Mol Neurosci. 2021;14:746211.
CAS PubMed PubMed Central Google Scholar
Raulin AC, Martens YA, Bu G. Lipoproteins in the central nervous system: from biology to pathobiology. Annu Rev Biochem. 2022;91:731–59.
CAS PubMed PubMed Central Google Scholar
Tsujita M, Melchior JT, Yokoyama S. Lipoprotein particles in cerebrospinal fluid. Arterioscler Thromb Vasc Biol. 2024;44(5):1042–52.
CAS PubMed PubMed Central Google Scholar
Linton MF, Gish R, Hubl ST, Bütler E, Esquivel C, Bry WI, et al. Phenotypes of Apolipoprotein B and Apolipoprotein E after liver transplantation. J Clin Invest. 1991;88(1):270–81.
Comments (0)