Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8:727
Article CAS PubMed PubMed Central Google Scholar
Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 6:18
Article PubMed PubMed Central Google Scholar
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848
Article CAS PubMed PubMed Central Google Scholar
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q et al (2019) Reassessment of exosome composition. Cell 177:428–45.e18
Article CAS PubMed PubMed Central Google Scholar
Gurung S, Perocheau D, Touramanidou L, Baruteau J (2021) The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal 19:47
Article CAS PubMed PubMed Central Google Scholar
Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579
Article CAS PubMed Google Scholar
Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208
Article CAS PubMed Google Scholar
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18:75
Article PubMed PubMed Central Google Scholar
Yue B, Yang H, Wang J, Ru W, Wu J et al (2020) Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif 53:e12857
Article CAS PubMed PubMed Central Google Scholar
Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298
Article CAS PubMed Google Scholar
Anthony DF, Shiels PG (2013) Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplant Res 2:10
Article CAS PubMed PubMed Central Google Scholar
Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920
Article CAS PubMed Google Scholar
Zhu M, Liu Y, Qin H, Tong S, Sun Q et al (2021) Osteogenically-induced exosomes stimulate osteogenesis of human adipose-derived stem cells. Cell Tissue Bank 22:77–91
Article CAS PubMed Google Scholar
Liu T, Hu W, Zou X, Xu J, He S et al (2020) Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering microRNA profiles. Stem Cells Int 2020:8852307
Article PubMed PubMed Central Google Scholar
Furi I, Momen-Heravi F, Szabo G (2017) Extracellular vesicle isolation: present and future. Ann Transl Med 5:263
Article PubMed PubMed Central Google Scholar
Wiklander OPB, Brennan MA, Lotvall J, Breakefield XO, El Andaloussi S (2019) Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aav8521
Article PubMed PubMed Central Google Scholar
Liang B, Liang JM, Ding JN, Xu J, Xu JG, Chai YM (2019) Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther 10:335
Article PubMed PubMed Central Google Scholar
Nakamura Y, Kita S, Tanaka Y, Fukuda S, Obata Y et al (2020) Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol Ther 28:2203–2219
Article CAS PubMed PubMed Central Google Scholar
Guo S, Debbi L, Zohar B, Samuel R, Arzi RS et al (2021) Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett 21:2497–2504
Article CAS PubMed Google Scholar
Schiller LT, Lemus-Diaz N, Rinaldi Ferreira R, Boker KO, Gruber J (2018) Enhanced production of exosome-associated AAV by overexpression of the tetraspanin CD9. Mol Ther Methods Clin Dev 9:278–287
Article CAS PubMed PubMed Central Google Scholar
Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M et al (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27:237–51.e4
Article CAS PubMed Google Scholar
Wang L, Wang N, Zhang W, Cheng X, Yan Z et al (2022) Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 7:48
Article CAS PubMed PubMed Central Google Scholar
Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O et al (2007) Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 17:320–327
Article CAS PubMed PubMed Central Google Scholar
Sonmez K, Zaveri NT, Kerman IA, Burke S, Neal CR et al (2009) Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 5:e1000258
Article PubMed PubMed Central Google Scholar
Kim DK, Yun S, Son GH, Hwang JI, Park CR et al (2014) Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology 155:1864–1873
Toll L, Khroyan TV, Sonmez K, Ozawa A, Lindberg I et al (2012) Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception. FASEB J 26:947–954
Article CAS PubMed PubMed Central Google Scholar
Moazen P, Taherianfard M, Ahmadi Soleimani M, Norozpor M (2018) Synergistic effect of spexin and progesterone on pain sensitivity attenuation in ovariectomized rats. Clin Exp Pharmacol Physiol 45:349–354
Article CAS PubMed Google Scholar
Lv SY, Cui B, Yang Y, Du H, Zhang X et al (2019) Spexin/NPQ induces FBJ osteosarcoma oncogene (Fos) and produces antinociceptive effect against inflammatory pain in the mouse model. Am J Pathol 189:886–899
Article CAS PubMed Google Scholar
Khadir A, Kavalakatt S, Madhu D, Devarajan S, Abubaker J et al (2020) Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci Rep 10:10635
Article CAS PubMed PubMed Central Google Scholar
Assefa F, Kim JA, Lim J, Nam SH, Shin HI, Park EK (2022) The neuropeptide spexin promotes the osteoblast differentiation of MC3T3-E1 cells via the MEK/ERK pathway and bone regeneration in a mouse calvarial defect model. Tissue Eng Regen Med 19:189–202
Comments (0)