Hypoxia/reoxygenation-induced Glycolysis Mediates Myocardial Ischemia–reperfusion Injury Through Promoting the Lactylation of GPX4

Li S, Gao X, Yang J, Xu H, Wang Y, Zhao Y, et al. Number of standard modifiable risk factors and mortality in patients with first-presentation ST-segment elevation myocardial infarction: insights from China Acute Myocardial Infarction registry. BMC Med. 2022;20:217. https://doi.org/10.1186/s12916-022-02418-w.

Article  PubMed  PubMed Central  Google Scholar 

Asaria P, Bennett JE, Elliott P, Rashid T, Iyathooray DH, Douglass M, et al. Contributions of event rates, pre-hospital deaths, and deaths following hospitalisation to variations in myocardial infarction mortality in 326 districts in England: a spatial analysis of linked hospitalisation and mortality data. Lancet Public Health. 2022;7:e813–24. https://doi.org/10.1016/S2468-2667(22)00108-6.

Article  PubMed  PubMed Central  Google Scholar 

Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35. https://doi.org/10.1056/NEJMra071667.

Article  CAS  PubMed  Google Scholar 

Mao ZJ, Lin H, Hou JW, Zhou Q, Wang Q, Chen YH. A Meta-Analysis of Resveratrol Protects against Myocardial Ischemia/Reperfusion Injury: Evidence from Small Animal Studies and Insight into Molecular Mechanisms. Oxid Med Cell Longev. 2019;2019:5793867. https://doi.org/10.1155/2019/5793867.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hausenloy DJ, Yellon DM. Targeting Myocardial Reperfusion Injury-The Search Continues. N Engl J Med. 2015;373:1073–5. https://doi.org/10.1056/NEJMe1509718.

Article  PubMed  Google Scholar 

He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, et al. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med. 2022;23:430. https://doi.org/10.3892/etm.2022.11357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki C, Hatayama N, Ogawa T, Nanizawa E, Otsuka S, Hata K, et al. Cardioprotection via Metabolism for Rat Heart Preservation Using the High-Pressure Gaseous Mixture of Carbon Monoxide and Oxygen. Int J Mol Sci. 2020;21:8858. https://doi.org/10.3390/ijms21228858.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta. 2011;1813:1333–50. https://doi.org/10.1016/j.bbamcr.2011.01.015.

Article  CAS  PubMed  Google Scholar 

Wang Y, Fu M, Wang J, Zhang J, Han X, Song Y, et al. Qiliqiangxin Improves Cardiac Function through Regulating Energy Metabolism via HIF-1alpha-Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction. Biomed Res Int. 2020;2020:1276195. https://doi.org/10.1155/2020/1276195.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu LM, Xu Y. Epigenetic regulation in cardiac fibrosis. World J Cardiol. 2015;7:784–91. https://doi.org/10.4330/wjc.v7.i11.784.

Article  PubMed  PubMed Central  Google Scholar 

Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol. 2023;14:1211221. https://doi.org/10.3389/fimmu.2023.1211221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 2024;16:72. https://doi.org/10.1186/s13148-024-01682-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang L, Yu Z, Qian X, Fang H, Wang Y. LDHA exacerbates myocardial ischemia-reperfusion injury through inducing NLRP3 lactylation. Bmc Cardiovasc Disord. 2024;24:651. https://doi.org/10.1186/s12872-024-04251-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun. 2021;12:5103. https://doi.org/10.1038/s41467-021-25354-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016;26:165–76. https://doi.org/10.1016/j.tcb.2015.10.014.

Article  CAS  PubMed  Google Scholar 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80. https://doi.org/10.1038/s41586-019-1678-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biegus J, Zymlinski R, Sokolski M, Gajewski P, Banasiak W, Ponikowski P. Clinical, respiratory, haemodynamic, and metabolic determinants of lactate in heart failure. Kardiol Pol. 2019;77:47–52. https://doi.org/10.5603/KP.a2018.0240.

Article  PubMed  Google Scholar 

Zymlinski R, Biegus J, Sokolski M, Siwolowski P, Nawrocka-Millward S, Todd J, et al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion. Eur J Heart Fail. 2018;20:1011–8. https://doi.org/10.1002/ejhf.1156.

Article  CAS  PubMed  Google Scholar 

Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12:10924–34. https://doi.org/10.1080/21655979.2021.1995994.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Mao C, Zhang C, Zhang M, Gong J, Wang X. Salvianolic Acid B Inhibits Ferroptosis and Apoptosis during Myocardial Ischemia/Reperfusion Injury via Decreasing the Ubiquitin-Proteasome Degradation of GPX4 and the ROS-JNK/MAPK Pathways. Molecules. 2023;28:4117. https://doi.org/10.3390/molecules28104117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang T, Liu H, Yang C, Mo H, Wang X, Song X, et al. Galangin Attenuates Myocardial Ischemic Reperfusion-Induced Ferroptosis by Targeting Nrf2/Gpx4 Signaling Pathway. Drug Des Devel Ther. 2023;17:2495–511. https://doi.org/10.2147/DDDT.S409232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7:305. https://doi.org/10.1038/s41392-022-01151-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pajak B, Siwiak E, Soltyka M, Priebe A, Zielinski R, Fokt I, et al. 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int J Mol Sci 2019;21. https://doi.org/10.3390/ijms21010234.

Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell. 2018;33:368–85. https://doi.org/10.1016/j.ccell.2018.01.010.

Article  CAS  PubMed  Google Scholar 

Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29:133–46. https://doi.org/10.1038/s41418-021-00841-9.

Article  CAS  PubMed  Google Scholar 

Ge Y, Liu L, Luo L, Fang Y, Ni T. MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis. Cardiovasc Ther. 2022;2022:7332298. https://doi.org/10.1155/2022/7332298.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, et al. Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. Oxid Med Cell Longev. 2021;2021:6614009. https://doi.org/10.1155/202

Comments (0)

No login
gif