Li S, Gao X, Yang J, Xu H, Wang Y, Zhao Y, et al. Number of standard modifiable risk factors and mortality in patients with first-presentation ST-segment elevation myocardial infarction: insights from China Acute Myocardial Infarction registry. BMC Med. 2022;20:217. https://doi.org/10.1186/s12916-022-02418-w.
Article PubMed PubMed Central Google Scholar
Asaria P, Bennett JE, Elliott P, Rashid T, Iyathooray DH, Douglass M, et al. Contributions of event rates, pre-hospital deaths, and deaths following hospitalisation to variations in myocardial infarction mortality in 326 districts in England: a spatial analysis of linked hospitalisation and mortality data. Lancet Public Health. 2022;7:e813–24. https://doi.org/10.1016/S2468-2667(22)00108-6.
Article PubMed PubMed Central Google Scholar
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35. https://doi.org/10.1056/NEJMra071667.
Article CAS PubMed Google Scholar
Mao ZJ, Lin H, Hou JW, Zhou Q, Wang Q, Chen YH. A Meta-Analysis of Resveratrol Protects against Myocardial Ischemia/Reperfusion Injury: Evidence from Small Animal Studies and Insight into Molecular Mechanisms. Oxid Med Cell Longev. 2019;2019:5793867. https://doi.org/10.1155/2019/5793867.
Article CAS PubMed PubMed Central Google Scholar
Hausenloy DJ, Yellon DM. Targeting Myocardial Reperfusion Injury-The Search Continues. N Engl J Med. 2015;373:1073–5. https://doi.org/10.1056/NEJMe1509718.
He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, et al. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med. 2022;23:430. https://doi.org/10.3892/etm.2022.11357.
Article CAS PubMed PubMed Central Google Scholar
Suzuki C, Hatayama N, Ogawa T, Nanizawa E, Otsuka S, Hata K, et al. Cardioprotection via Metabolism for Rat Heart Preservation Using the High-Pressure Gaseous Mixture of Carbon Monoxide and Oxygen. Int J Mol Sci. 2020;21:8858. https://doi.org/10.3390/ijms21228858.
Article CAS PubMed PubMed Central Google Scholar
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta. 2011;1813:1333–50. https://doi.org/10.1016/j.bbamcr.2011.01.015.
Article CAS PubMed Google Scholar
Wang Y, Fu M, Wang J, Zhang J, Han X, Song Y, et al. Qiliqiangxin Improves Cardiac Function through Regulating Energy Metabolism via HIF-1alpha-Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction. Biomed Res Int. 2020;2020:1276195. https://doi.org/10.1155/2020/1276195.
Article CAS PubMed PubMed Central Google Scholar
Yu LM, Xu Y. Epigenetic regulation in cardiac fibrosis. World J Cardiol. 2015;7:784–91. https://doi.org/10.4330/wjc.v7.i11.784.
Article PubMed PubMed Central Google Scholar
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol. 2023;14:1211221. https://doi.org/10.3389/fimmu.2023.1211221.
Article CAS PubMed PubMed Central Google Scholar
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 2024;16:72. https://doi.org/10.1186/s13148-024-01682-2.
Article CAS PubMed PubMed Central Google Scholar
Fang L, Yu Z, Qian X, Fang H, Wang Y. LDHA exacerbates myocardial ischemia-reperfusion injury through inducing NLRP3 lactylation. Bmc Cardiovasc Disord. 2024;24:651. https://doi.org/10.1186/s12872-024-04251-w.
Article CAS PubMed PubMed Central Google Scholar
Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun. 2021;12:5103. https://doi.org/10.1038/s41467-021-25354-4.
Article CAS PubMed PubMed Central Google Scholar
Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016;26:165–76. https://doi.org/10.1016/j.tcb.2015.10.014.
Article CAS PubMed Google Scholar
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80. https://doi.org/10.1038/s41586-019-1678-1.
Article CAS PubMed PubMed Central Google Scholar
Biegus J, Zymlinski R, Sokolski M, Gajewski P, Banasiak W, Ponikowski P. Clinical, respiratory, haemodynamic, and metabolic determinants of lactate in heart failure. Kardiol Pol. 2019;77:47–52. https://doi.org/10.5603/KP.a2018.0240.
Zymlinski R, Biegus J, Sokolski M, Siwolowski P, Nawrocka-Millward S, Todd J, et al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion. Eur J Heart Fail. 2018;20:1011–8. https://doi.org/10.1002/ejhf.1156.
Article CAS PubMed Google Scholar
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12:10924–34. https://doi.org/10.1080/21655979.2021.1995994.
Article CAS PubMed PubMed Central Google Scholar
Xu X, Mao C, Zhang C, Zhang M, Gong J, Wang X. Salvianolic Acid B Inhibits Ferroptosis and Apoptosis during Myocardial Ischemia/Reperfusion Injury via Decreasing the Ubiquitin-Proteasome Degradation of GPX4 and the ROS-JNK/MAPK Pathways. Molecules. 2023;28:4117. https://doi.org/10.3390/molecules28104117.
Article CAS PubMed PubMed Central Google Scholar
Yang T, Liu H, Yang C, Mo H, Wang X, Song X, et al. Galangin Attenuates Myocardial Ischemic Reperfusion-Induced Ferroptosis by Targeting Nrf2/Gpx4 Signaling Pathway. Drug Des Devel Ther. 2023;17:2495–511. https://doi.org/10.2147/DDDT.S409232.
Article CAS PubMed PubMed Central Google Scholar
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7:305. https://doi.org/10.1038/s41392-022-01151-3.
Article CAS PubMed PubMed Central Google Scholar
Pajak B, Siwiak E, Soltyka M, Priebe A, Zielinski R, Fokt I, et al. 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int J Mol Sci 2019;21. https://doi.org/10.3390/ijms21010234.
Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell. 2018;33:368–85. https://doi.org/10.1016/j.ccell.2018.01.010.
Article CAS PubMed Google Scholar
Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29:133–46. https://doi.org/10.1038/s41418-021-00841-9.
Article CAS PubMed Google Scholar
Ge Y, Liu L, Luo L, Fang Y, Ni T. MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis. Cardiovasc Ther. 2022;2022:7332298. https://doi.org/10.1155/2022/7332298.
Article CAS PubMed PubMed Central Google Scholar
Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, et al. Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. Oxid Med Cell Longev. 2021;2021:6614009. https://doi.org/10.1155/202
Comments (0)