Circulating Extracellular Vesicles Predict Complications after Cardiac Surgery

Ma J, Yuan HX, Chen YT, et al. Circulating endothelial microparticles: a promising biomarker of acute kidney injury after cardiac surgery with cardiopulmonary bypass. Ann Transl Med. 2021;9(9):786. https://doi.org/10.21037/atm-20-7828.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan HX, Liang KF, Chen C, et al. Size distribution of microparticles: a new parameter to predict acute lung injury after cardiac surgery with cardiopulmonary bypass. Front Cardiovasc Med. 2022;9:893609. https://doi.org/10.3389/fcvm.2022.893609.

Article  PubMed  PubMed Central  Google Scholar 

Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–48. https://doi.org/10.1038/ki.2010.278.

Article  CAS  PubMed  Google Scholar 

Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20360.

Jian YP, Yuan HX, Hu KH, et al. Protein compositions changes of circulating microparticles in patients with valvular heart disease subjected to cardiac surgery contribute to systemic inflammatory response and disorder of coagulation. Shock. 2019;52(5):487–96. https://doi.org/10.1097/SHK.0000000000001309.

Article  CAS  PubMed  Google Scholar 

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng M, Liu X, Xu G. Extracellular vesicles as messengers in atherosclerosis. J Cardiovasc Transl. 2020;13(2):121–30. https://doi.org/10.1007/s12265-019-09923-z.

Article  Google Scholar 

Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41. https://doi.org/10.1016/j.plipres.2017.03.001.

Article  CAS  PubMed  Google Scholar 

Li S, Li Y, Chen B, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106–12. https://doi.org/10.1093/nar/gkx891.

Article  CAS  PubMed  Google Scholar 

Kalluri R, LeBleu VS. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol. 2016;81:275–80. https://doi.org/10.1101/sqb.2016.81.030932.

Article  PubMed  Google Scholar 

Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114(2):345–53. https://doi.org/10.1161/CIRCRESAHA.113.300858.

Article  CAS  PubMed  Google Scholar 

Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012;10(3):437–46. https://doi.org/10.1111/j.1538-7836.2011.04610.x.

Article  CAS  PubMed  Google Scholar 

Wolf P. The nature and significance of platelet products in human plasma. Brit J Haematol. 1967;13(3):269–88. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.

Article  CAS  Google Scholar 

Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. https://doi.org/10.1002/jev2.12404.

Article  PubMed  PubMed Central  Google Scholar 

Pirro M, Bocci EB, Di Filippo F, et al. Imbalance between endothelial injury and repair in patients with polymyalgia rheumatica: improvement with corticosteroid treatment. J Intern Med. 2012;272(2):177–84. https://doi.org/10.1111/j.1365-2796.2011.02510.x.

Article  CAS  PubMed  Google Scholar 

Fu L, Hu XX, Lin ZB, et al. Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation. J Thorac Cardiov Sur. 2015;150(3):666–72. https://doi.org/10.1016/j.jtcvs.2015.05.069.

Article  CAS  Google Scholar 

Ci HB, Ou ZJ, Chang FJ, et al. Endothelial microparticles increase in mitral valve disease and impair mitral valve endothelial function. Am J Physiol-Endoc M. 2013;304(7):E695-702. https://doi.org/10.1152/ajpendo.00016.2013.

Article  CAS  Google Scholar 

Balta S. Endothelial Dysfunction and inflammatory markers of vascular disease. Curr Vasc Pharmacol. 2021;19(3):243–9. https://doi.org/10.2174/1570161118666200421142542.

Article  CAS  PubMed  Google Scholar 

Diehl P, Nagy F, Sossong V, et al. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemostasis. 2008;99(4):711–9. https://doi.org/10.1160/TH07-05-0334.

Article  CAS  Google Scholar 

Lin ZB, Ci HB, Li Y, et al. Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J Transl Med. 2017;15(1):4. https://doi.org/10.1186/s12967-016-1087-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amabile N, Rautou PE, Tedgui A, Boulanger CM. Microparticles: key protagonists in cardiovascular disorders. Semin Thromb Hemost. 2010;36(8):907–16. https://doi.org/10.1055/s-0030-1267044.

Article  CAS  PubMed  Google Scholar 

Chironi G, Simon A, Hugel B, et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscl Throm Vas. 2006;26(12):2775–80. https://doi.org/10.1161/01.ATV.0000249639.36915.04.

Article  CAS  Google Scholar 

Sionis A, Suades R, Sans-Roselló J, et al. Circulating microparticles are associated with clinical severity of persistent ST-segment elevation myocardial infarction complicated with cardiogenic shock. Int J Cardiol. 2018;258:249–56. https://doi.org/10.1016/j.ijcard.2017.10.044.

Article  CAS  PubMed  Google Scholar 

Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–4010. https://doi.org/10.7150/thno.56035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol. 2008;51(18):1760–71. https://doi.org/10.1016/j.jacc.2008.01.040.

Article  CAS  PubMed  Google Scholar 

Amabile N, Heiss C, Real WM, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Resp Crit Care. 2008;177(11):1268–75. https://doi.org/10.1164/rccm.200710-1458OC.

Article  CAS  Google Scholar 

Yang C, Mwaikambo BR, Zhu T, et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol-Reg I. 2008;294(2):R467–76. https://doi.org/10.1152/ajpregu.00432.2007.

Article  CAS  Google Scholar 

Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscl Throm Vas. 2006;26(1):112–6. https://doi.org/10.1161/01.ATV.0000191634.13057.15.

Article  CAS  Google Scholar 

Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol-Heart C. 2004;286(5):H1910–5. https://doi.org/10.1152/ajpheart.01172.2003.

Article  CAS  Google Scholar 

Densmore JC, Signorino PR, Ou J, et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock. 2006;26(5):464–71. https://doi.org/10.1097/01.shk.0000228791.10550.36.

Article 

Comments (0)

No login
gif