Ma J, Yuan HX, Chen YT, et al. Circulating endothelial microparticles: a promising biomarker of acute kidney injury after cardiac surgery with cardiopulmonary bypass. Ann Transl Med. 2021;9(9):786. https://doi.org/10.21037/atm-20-7828.
Article CAS PubMed PubMed Central Google Scholar
Yuan HX, Liang KF, Chen C, et al. Size distribution of microparticles: a new parameter to predict acute lung injury after cardiac surgery with cardiopulmonary bypass. Front Cardiovasc Med. 2022;9:893609. https://doi.org/10.3389/fcvm.2022.893609.
Article PubMed PubMed Central Google Scholar
Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–48. https://doi.org/10.1038/ki.2010.278.
Article CAS PubMed Google Scholar
Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20360.
Jian YP, Yuan HX, Hu KH, et al. Protein compositions changes of circulating microparticles in patients with valvular heart disease subjected to cardiac surgery contribute to systemic inflammatory response and disorder of coagulation. Shock. 2019;52(5):487–96. https://doi.org/10.1097/SHK.0000000000001309.
Article CAS PubMed Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.
Article CAS PubMed PubMed Central Google Scholar
Peng M, Liu X, Xu G. Extracellular vesicles as messengers in atherosclerosis. J Cardiovasc Transl. 2020;13(2):121–30. https://doi.org/10.1007/s12265-019-09923-z.
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41. https://doi.org/10.1016/j.plipres.2017.03.001.
Article CAS PubMed Google Scholar
Li S, Li Y, Chen B, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106–12. https://doi.org/10.1093/nar/gkx891.
Article CAS PubMed Google Scholar
Kalluri R, LeBleu VS. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol. 2016;81:275–80. https://doi.org/10.1101/sqb.2016.81.030932.
Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114(2):345–53. https://doi.org/10.1161/CIRCRESAHA.113.300858.
Article CAS PubMed Google Scholar
Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012;10(3):437–46. https://doi.org/10.1111/j.1538-7836.2011.04610.x.
Article CAS PubMed Google Scholar
Wolf P. The nature and significance of platelet products in human plasma. Brit J Haematol. 1967;13(3):269–88. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.
Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. https://doi.org/10.1002/jev2.12404.
Article PubMed PubMed Central Google Scholar
Pirro M, Bocci EB, Di Filippo F, et al. Imbalance between endothelial injury and repair in patients with polymyalgia rheumatica: improvement with corticosteroid treatment. J Intern Med. 2012;272(2):177–84. https://doi.org/10.1111/j.1365-2796.2011.02510.x.
Article CAS PubMed Google Scholar
Fu L, Hu XX, Lin ZB, et al. Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation. J Thorac Cardiov Sur. 2015;150(3):666–72. https://doi.org/10.1016/j.jtcvs.2015.05.069.
Ci HB, Ou ZJ, Chang FJ, et al. Endothelial microparticles increase in mitral valve disease and impair mitral valve endothelial function. Am J Physiol-Endoc M. 2013;304(7):E695-702. https://doi.org/10.1152/ajpendo.00016.2013.
Balta S. Endothelial Dysfunction and inflammatory markers of vascular disease. Curr Vasc Pharmacol. 2021;19(3):243–9. https://doi.org/10.2174/1570161118666200421142542.
Article CAS PubMed Google Scholar
Diehl P, Nagy F, Sossong V, et al. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemostasis. 2008;99(4):711–9. https://doi.org/10.1160/TH07-05-0334.
Lin ZB, Ci HB, Li Y, et al. Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J Transl Med. 2017;15(1):4. https://doi.org/10.1186/s12967-016-1087-2.
Article CAS PubMed PubMed Central Google Scholar
Amabile N, Rautou PE, Tedgui A, Boulanger CM. Microparticles: key protagonists in cardiovascular disorders. Semin Thromb Hemost. 2010;36(8):907–16. https://doi.org/10.1055/s-0030-1267044.
Article CAS PubMed Google Scholar
Chironi G, Simon A, Hugel B, et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscl Throm Vas. 2006;26(12):2775–80. https://doi.org/10.1161/01.ATV.0000249639.36915.04.
Sionis A, Suades R, Sans-Roselló J, et al. Circulating microparticles are associated with clinical severity of persistent ST-segment elevation myocardial infarction complicated with cardiogenic shock. Int J Cardiol. 2018;258:249–56. https://doi.org/10.1016/j.ijcard.2017.10.044.
Article CAS PubMed Google Scholar
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–4010. https://doi.org/10.7150/thno.56035.
Article CAS PubMed PubMed Central Google Scholar
Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol. 2008;51(18):1760–71. https://doi.org/10.1016/j.jacc.2008.01.040.
Article CAS PubMed Google Scholar
Amabile N, Heiss C, Real WM, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Resp Crit Care. 2008;177(11):1268–75. https://doi.org/10.1164/rccm.200710-1458OC.
Yang C, Mwaikambo BR, Zhu T, et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol-Reg I. 2008;294(2):R467–76. https://doi.org/10.1152/ajpregu.00432.2007.
Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscl Throm Vas. 2006;26(1):112–6. https://doi.org/10.1161/01.ATV.0000191634.13057.15.
Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol-Heart C. 2004;286(5):H1910–5. https://doi.org/10.1152/ajpheart.01172.2003.
Densmore JC, Signorino PR, Ou J, et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock. 2006;26(5):464–71. https://doi.org/10.1097/01.shk.0000228791.10550.36.
Comments (0)