Investigating the Therapeutic Potential of miRNA-137-3p/383-5p/PGC-1α Signalling Nexus Against Cardiac Hypertrophy

Zhu L, et al. Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med. 2019;23(3):1671–7.

Article  PubMed  PubMed Central  Google Scholar 

Forte M, et al. Cardiovascular pleiotropic effects of natriuretic peptides. Int J Mol Sci. 2019;20(16):3874.

Lin Z, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA. 2009;106(29):12103–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO, The top 10 causes of death. WHO, 2020.

Mushtaq I, et al. N-acetyl cysteine, selenium, and ascorbic acid rescue diabetic cardiac hypertrophyvia mitochondrial-associated redox regulators. Molecules. 2021;26(23):7285.

Cheng Y, et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother. 2021;133: 111022.

Article  CAS  PubMed  Google Scholar 

Kadlec AO, et al. Role of PGC-1α in vascular regulation: implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(8):1467–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015;282(4):647–72.

Article  CAS  PubMed  Google Scholar 

Melser, S., J. Lavie, and G. Bénard, Mitochondrial degradation and energy metabolism. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2015. 1853(10): p. 2812–2821.

Yang D, et al. Mitochondria in pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med. 2022;8:822969.

Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.

Article  CAS  PubMed  Google Scholar 

Ong S-B, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez S, et al. Obesity causes PGC-1α deficiency in the pancreas leading to marked IL-6 upregulation via NF-κB in acute pancreatitis. J Pathol. 2019;247(1):48–59.

Article  PubMed  Google Scholar 

Valle I, et al. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73.

Article  CAS  PubMed  Google Scholar 

Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases. Balkan Med J. 2020;37(2):60–71.

PubMed  PubMed Central  Google Scholar 

Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

Article  CAS  PubMed  Google Scholar 

Hussain K, et al. Profiling of Targeted miRNAs (8-nt) for the Genes Involved in Type 2 Diabetes Mellitus and Cardiac Hypertrophy. Mol Biol. 2023;57(2):338–45.

Article  CAS  Google Scholar 

Agarwal V, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;54:e05005.

Kumar, S., et al., Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. J Ethnopharmacol, 2017. 198: p. 98–108.

Guo Y, et al. MicroRNA-709 Mediates Acute Tubular Injury through Effects on Mitochondrial Function. J Am Soc Nephrol. 2018;29(2):449–61.

Article  CAS  PubMed  Google Scholar 

Hayashi I, et al. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2007;631(1):55–61.

Article  CAS  Google Scholar 

Buege JA, Aust SD. [30] Microsomal lipid peroxidation. In: Methods in enzymology. Elsevier; 1978. p. 302–10.

Google Scholar 

Jevremović S, et al. Superoxide dismutase activity and isoenzyme profiles in bulbs of snake’s head fritillary in response to cold treatment. Archives of Biological Sciences. 2010;62(3):553–8.

Article  Google Scholar 

Jia X, et al. High production, purification, biochemical characterization and gene analysis of a novel catalase from the thermophilic bacterium Ureibacillus thermosphaericus FZSF03. Int J Biol Macromol. 2017;103:89–98.

Article  CAS  PubMed  Google Scholar 

Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159–65.

Article  CAS  PubMed  Google Scholar 

Sabir, K., et al., Effect of various levels of iron on peroxidase activity in the fish, Cirrhina mrigala. 2019.

Mushtaq I, et al. Cardioprotective effect of tetra (aniline) containing terpolymers through miR-15a-5p and MFN-2 regulation against hypertrophic responses. Arch Biochem Biophys. 2023;747: 109763.

Article  CAS  PubMed  Google Scholar 

Ishtiaq A, et al. Melatonin abated Bisphenol A–induced neurotoxicity via p53/PUMA/Drp-1 signaling. Environ Sci Pollut Res. 2021;28:17789–801.

Article  CAS  Google Scholar 

Ali T, et al. Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Arch Biochem Biophys. 2019;661:56–65.

Article  CAS  PubMed  Google Scholar 

Shang L, et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK-3β signaling pathway. Chem Biol Interact. 2019;307:21–8.

Article  CAS  PubMed  Google Scholar 

Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J. 2015;79(8):1647–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao YS, Li TD, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids Health Dis. 2020;19:1–6.

Article  Google Scholar 

Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93(8):903–7.

Article  CAS  PubMed  Google Scholar 

Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–8.

Article  CAS  PubMed  Google Scholar 

Moris D, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseasesand the clinical significance of myocardial redox. Ann Transl Med. 2017;5(16):326.

Yan H, et al. Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Molecular Therapy-Nucleic Acids. 2021;23:406–17.

Article  CAS  PubMed  Google Scholar 

Chen D, et al. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1253–64.

Article  CAS  PubMed  Google Scholar 

Schlaepfer, I.R. and M. Joshi, CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology, 2020. 161(2): p. bqz046.

Stroud DA, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538(7623):123–6.

Article  CAS  PubMed  Google Scholar 

Zhou L-Y, et al. Mitochondrial function in cardiac hypertrophy. Int J Cardiol. 2013;167(4):1118–25.

Article  PubMed  Google Scholar 

Karnati S, et al. Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol. 2013;140(2):105–17.

Article  CAS  PubMed  Google Scholar 

Knudson CM, Korsmeyer SJ. Bcl-2 and Bax function independently to regulate cell death. Nat Genet. 1997;16(4):358–63.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif