Zhu L, et al. Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med. 2019;23(3):1671–7.
Article PubMed PubMed Central Google Scholar
Forte M, et al. Cardiovascular pleiotropic effects of natriuretic peptides. Int J Mol Sci. 2019;20(16):3874.
Lin Z, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA. 2009;106(29):12103–8.
Article CAS PubMed PubMed Central Google Scholar
WHO, The top 10 causes of death. WHO, 2020.
Mushtaq I, et al. N-acetyl cysteine, selenium, and ascorbic acid rescue diabetic cardiac hypertrophyvia mitochondrial-associated redox regulators. Molecules. 2021;26(23):7285.
Cheng Y, et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother. 2021;133: 111022.
Article CAS PubMed Google Scholar
Kadlec AO, et al. Role of PGC-1α in vascular regulation: implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(8):1467–74.
Article CAS PubMed PubMed Central Google Scholar
Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015;282(4):647–72.
Article CAS PubMed Google Scholar
Melser, S., J. Lavie, and G. Bénard, Mitochondrial degradation and energy metabolism. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2015. 1853(10): p. 2812–2821.
Yang D, et al. Mitochondria in pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med. 2022;8:822969.
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.
Article CAS PubMed Google Scholar
Ong S-B, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.
Article CAS PubMed PubMed Central Google Scholar
Pérez S, et al. Obesity causes PGC-1α deficiency in the pancreas leading to marked IL-6 upregulation via NF-κB in acute pancreatitis. J Pathol. 2019;247(1):48–59.
Valle I, et al. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73.
Article CAS PubMed Google Scholar
Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases. Balkan Med J. 2020;37(2):60–71.
PubMed PubMed Central Google Scholar
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.
Article CAS PubMed Google Scholar
Hussain K, et al. Profiling of Targeted miRNAs (8-nt) for the Genes Involved in Type 2 Diabetes Mellitus and Cardiac Hypertrophy. Mol Biol. 2023;57(2):338–45.
Agarwal V, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;54:e05005.
Kumar, S., et al., Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. J Ethnopharmacol, 2017. 198: p. 98–108.
Guo Y, et al. MicroRNA-709 Mediates Acute Tubular Injury through Effects on Mitochondrial Function. J Am Soc Nephrol. 2018;29(2):449–61.
Article CAS PubMed Google Scholar
Hayashi I, et al. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2007;631(1):55–61.
Buege JA, Aust SD. [30] Microsomal lipid peroxidation. In: Methods in enzymology. Elsevier; 1978. p. 302–10.
Jevremović S, et al. Superoxide dismutase activity and isoenzyme profiles in bulbs of snake’s head fritillary in response to cold treatment. Archives of Biological Sciences. 2010;62(3):553–8.
Jia X, et al. High production, purification, biochemical characterization and gene analysis of a novel catalase from the thermophilic bacterium Ureibacillus thermosphaericus FZSF03. Int J Biol Macromol. 2017;103:89–98.
Article CAS PubMed Google Scholar
Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159–65.
Article CAS PubMed Google Scholar
Sabir, K., et al., Effect of various levels of iron on peroxidase activity in the fish, Cirrhina mrigala. 2019.
Mushtaq I, et al. Cardioprotective effect of tetra (aniline) containing terpolymers through miR-15a-5p and MFN-2 regulation against hypertrophic responses. Arch Biochem Biophys. 2023;747: 109763.
Article CAS PubMed Google Scholar
Ishtiaq A, et al. Melatonin abated Bisphenol A–induced neurotoxicity via p53/PUMA/Drp-1 signaling. Environ Sci Pollut Res. 2021;28:17789–801.
Ali T, et al. Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Arch Biochem Biophys. 2019;661:56–65.
Article CAS PubMed Google Scholar
Shang L, et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK-3β signaling pathway. Chem Biol Interact. 2019;307:21–8.
Article CAS PubMed Google Scholar
Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J. 2015;79(8):1647–55.
Article CAS PubMed PubMed Central Google Scholar
Yao YS, Li TD, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids Health Dis. 2020;19:1–6.
Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93(8):903–7.
Article CAS PubMed Google Scholar
Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–8.
Article CAS PubMed Google Scholar
Moris D, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseasesand the clinical significance of myocardial redox. Ann Transl Med. 2017;5(16):326.
Yan H, et al. Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Molecular Therapy-Nucleic Acids. 2021;23:406–17.
Article CAS PubMed Google Scholar
Chen D, et al. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1253–64.
Article CAS PubMed Google Scholar
Schlaepfer, I.R. and M. Joshi, CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology, 2020. 161(2): p. bqz046.
Stroud DA, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538(7623):123–6.
Article CAS PubMed Google Scholar
Zhou L-Y, et al. Mitochondrial function in cardiac hypertrophy. Int J Cardiol. 2013;167(4):1118–25.
Karnati S, et al. Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol. 2013;140(2):105–17.
Article CAS PubMed Google Scholar
Knudson CM, Korsmeyer SJ. Bcl-2 and Bax function independently to regulate cell death. Nat Genet. 1997;16(4):358–63.
Comments (0)